【模板】最小费用最大流

题目描述

如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用。

输入输出格式

输入格式:
第一行包含四个正整数N、M、S、T,分别表示点的个数、有向边的个数、源点序号、汇点序号。

接下来M行每行包含四个正整数ui、vi、wi、fi,表示第i条有向边从ui出发,到达vi,边权为wi(即该边最大流量为wi),单位流量的费用为fi。

输出格式:
一行,包含两个整数,依次为最大流量和在最大流量情况下的最小费用。

输入输出样例

输入样例#1:
4 5 4 3
4 2 30 2
4 3 20 3
2 3 20 1
2 1 30 9
1 3 40 5
输出样例#1:
50 280
说明

时空限制:1000ms,128M

(BYX:最后两个点改成了1200ms)

数据规模:

对于30%的数据:N<=10,M<=10

对于70%的数据:N<=1000,M<=1000

对于100%的数据:N<=5000,M<=50000

样例说明:

这里写图片描述

如图,最优方案如下:

第一条流为4–>3,流量为20,费用为3*20=60。

第二条流为4–>2–>3,流量为20,费用为(2+1)*20=60。

第三条流为4–>2–>1–>3,流量为10,费用为(2+9+5)*10=160。

故最大流量为50,在此状况下最小费用为60+60+160=280。

故输出50 280。

代码

#include<bits/stdc++.h>
#define N 500005
#define ll long long
#define inf 0x7fffffff
using namespace std;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int n,m,S,T;
int tot=1,ans1,ans2;
int from[5005],dis[5005],head[5005];
bool inq[5005];
struct data{int from,to,next,v,c;}e[1500001];
inline void ins(int u,int v,int w,int c)
{
    tot++;
    e[tot].to=v;e[tot].from=u;
    e[tot].v=w;e[tot].c=c;
    e[tot].next=head[u];head[u]=tot;
}
bool spfa()
{
    for (int i=1;i<=n;i++) dis[i]=inf;
    queue<int> q;
    q.push(S);dis[S]=0;inq[S]=1;
    while (!q.empty())
    {
        int u=q.front();q.pop();
        for (int i=head[u];i;i=e[i].next)
        {
            if (e[i].v&&dis[e[i].to]>dis[u]+e[i].c)
            {
                from[e[i].to]=i;
                dis[e[i].to]=dis[u]+e[i].c;
                if (!inq[e[i].to])
                {
                    inq[e[i].to]=1;
                    q.push(e[i].to);
                }
            }
        }
        inq[u]=0;
    }
    if (dis[T]==inf) return 0;return 1;
}
void mcf()
{
    int x=inf,i=from[T];
    while (i)
    {
        x=min(x,e[i].v);
        i=from[e[i].from];
    }
    ans1+=x;
    i=from[T];
    while (i)
    {
        e[i].v-=x;e[i^1].v+=x;
        ans2+=x*e[i].c;
        i=from[e[i].from];
    }
}
int main()
{
    n=read();m=read();S=read();T=read();
    int u,v,w,c;
    for (int i=1;i<=m;i++)
    {
        u=read(),v=read(),w=read(),c=read();
        ins(u,v,w,c);ins(v,u,0,-c);
    }
    while (spfa()) mcf();
    printf("%d %d",ans1,ans2);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值