Swin-transformer训练自己的数据集,图像分类

本文介绍了如何在官方Swin Transformer基础上针对丰富图案数据集进行定制训练,包括添加数据增强、修改代码部署和配置。重点讲解了如何调整环境、数据集准备、参数设置及模型部署流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

官方swin-transformer目前只支持训练imageNet,其次加载预训练有点东西,想要训练自己的数据集需要稍微改改代码,为了方便使用,我将改好的上传到github,大家仅需要自己修改参数即可使用。github: https://github.com/sunanlin13174/Image-train-Swin-transformer

我的数据集是图案比较丰富的,但是部分类或者数据集本身数据不多,因此在官方已有数据增强:亮度、对比度、饱和度变化、mixup、裁剪等基础上,添加了上下左右中心裁剪并翻转,生成更多的数据,然后以0.5的概率将其转为灰度图(r=g=b),这部分代码可在data/build.py中修改,后期使用flask部署到服务器端运行。

其次,主要讲一下如何使用这份代码。

1. 适配swin-transformer环境,根据官方github操作即可,当然在安装apex时可能会遇到坑,基本是torch.verson.cuda版本与本机安装的cuda版本不一致导致,可调整torch的版本适应本机的cuda版本。

2 . 准备数据集,代码使用的是ImageFolder函数生成dataloader,因此,你的数据集应该有如下格式:

data     /    class_1

                 class_2

                 class_3

                    .......

(class_1,class_2 。。。是类别文件夹的名字。)

3. 修改 main.py中的参数,主要修改--cfg 、data_path 、batch-size、resume

resume就是载入官方的预训练权重,给它路径即可,代码中我已修改最终输出的类别通道数,需要自己调整,在main.py的

其他的自由修改,建议默认。

4. 打开config.py文件,修改

_C.SAVE_FREQ = 10 ,每多少个epoch保存一次模型
_C.TRAIN.EPOCHS = 300  总共训练多少个epoch

5. 修改 data/build.py中第69行,num_classes=..自己的类别数,与3中修改的main.py保持类别一致。

6. 运行命令 python -m torch.distributed.launch  --nproc_per_node 1(gpu数量) --master_port 12345 main.py 即可

Swin-Transformer是一种新型的图像分类模型,它融合了transformer和局部窗口相互作用的思想,具有更高的计算效率和分类性能。在使用Swin-Transformer模型对自己的数据集进行训练时,一般需要进行以下几个步骤。 首先,需要准备好自己的数据集。这个数据集应包含图像和对应的类别标签。可以通过从网上下载公开数据集或者自己收集构建数据集。 接下来,需要对数据集进行预处理。首先,可以对图像进行尺寸的调整和归一化操作,确保输入的图像具有一致的尺寸和数据范围。其次,可以对标签进行编码,将类别信息转换为模型可以理解的数字形式。 然后,可以使用Swin-Transformer模型对数据集进行训练。在训练过程中,需要将数据集按照一定的比例分为训练集和验证集。训练集用于模型的参数更新,而验证集用于调整模型的超参数,以及评估模型的性能。 在每个训练迭代中,可以将一批图像输入到Swin-Transformer模型中,并计算模型的损失函数。通过反向传播算法,可以更新模型的参数,使得模型能够更好地拟合训练数据。 训练完成后,可以使用训练好的Swin-Transformer模型对新的图像进行分类预测。只需将图像输入到模型中,即可得到图像所属的类别标签。 总之,使用Swin-Transformer模型对自己的数据集进行图像分类需要准备数据集、预处理数据、划分训练集和验证集、进行训练和评估,并最终利用训练好的模型进行预测。这个过程需要仔细调整模型的超参数和进行适当的数据增强操作,以获得更好的分类性能。
评论 75
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值