开心消消乐
题目
给定一个 N 行 M 列的二维矩阵,矩阵中每个位置的数字取值为 0 或 1,矩阵示例如:
1 1 0 0
0 0 0 1
0 0 1 1
1 1 1 1
现需要将矩阵中所有的 1 进行反转为 0,规则如下:
- 当点击一个 1 时,该 1 被反转为 0,同时相邻的上、下、左、右,以及左上、左下、右上、右下 8 个方向的 1 (如果存在 1)均会自动反转为 0;
- 进一步地,一个位置上的 1 被反转为 0 时,与其相邻的 8 个方向的 1 (如果存在 1)均会自动反转为 0;
按照上述规则示例中的矩阵只最少需要点击 2 次后,所有均值 0 。请问,给定一个矩阵,最少需要点击几次后,所有数字均为 0?
输入
第一行输入两个整数,分别表示矩阵的行数 N 和列数 M,取值范围均为 [1,100]
接下来 N 行表示矩阵的初始值,每行均为 M 个数,取值范围 [0,1]
输出
输出一个整数,表示最少需要点击的次数
示例一
输入
3 3
1 0 1
0 1 0
1 0 1
输出
1
说明
上述样例中,四个角上的 1 均在中间的 1 的相邻 8 个方向上,因此只需要点击一次即可。
示例二
输入
4 4
1 1 0 0
0 0 0 1
0 0 1 1
1 1 1 1
输出
2
说明
在上述 4×4 的矩阵中,只需要点击 2 次,即可将所有的 1 进行消除。
编码思路
实现的是一个矩阵连通块问题,给定一个 n × m n \times m