什么是 Capex

Capital expenditures (CAPEX or capex) are expenditures creating future benefits. Capex are used by a company to acquire or upgrade physical assets such as equipment, property, or industrial buildings. In accounting, a capital expenditure is added to an asset account ("capitalized"), thus increasing the asset's basis (the cost or value of an asset as adjusted for tax purposes). Capital expenditure is incurred when a business spends money either to buy fixed assets or to add to the value of an existing fixed asset.

Included in such amounts is spending on:

acquiring fixed assets
bringing them into business
legal costs of buying buildings
carriage inwards on machinery bought
any other cost needed for a fixed asset ready for use.
An ongoing question of the accounting of any company is whether certain expenses should be capitalized or expensed. Costs that are expensed in a particular month simply appear on the financial statement as a cost that was incurred that month. Costs that are capitalized, however, are amortized over multiple years. Capitalized expenditures show up on the balance sheet. Most ordinary business expenses are clearly either expensable or capitalizable, but some expenses could be treated either way, according to the preference of the company.

The counterpart of capital expenditure is operational expenditure ("OpEx").

CAPEX(Capital Expenditure)即资本性支出,计算公式为:CAPEX=战略性投资+滚动性投资。

    资本性投资支出指用于基础建设、扩大再生产等方面的需要在多个会计年度分期摊销的资本性支出。

    由于战略性投资的决策权不在本地网,因此BPR的指标考核中,Capex仅限于滚动性投资,不包括战略性投资。主要指标是Capex收入率和投资、回报率(ROI),前者为Capex收入比,反映资本性支出占收入的比重;后者反映投资效益。
 
数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值