JIRA import issues from CSV

本文介绍了如何在JIRA中通过CSV格式导入问题,详细步骤包括创建Excel并定义表头,确保问题类型和经办人信息正确,以及进行数据导入的六个步骤,包括字段匹配和配置信息的保存。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前在工作中,很多人问过能不能导入,我都说不能(捂脸)。

在疫情期间远程办公,突然发现了这个功能 import issues from CSV,就研究了下。

1、创建Excel,定义好表头,转换为CSV格式。

注意:问题类型值必须要与JIRA系统中对应,经办人也必须对应,是JIRA账号而不能输入中文姓名。

2、导入数据

步骤1:在问题-选择 import issues from CSV

步骤2:选择导入文件(步骤1中的文件),若已有配置文件可以选择。

步骤3:选择需要导入的项目,file encoding选择GB2312,否则下一步时文件中的中文会显示乱码。

步骤4:设置导入文件中字段与JIRA字段的匹配关系

### JIRA 搜索功能概述 JIRA 提供强大的搜索能力来帮助用户快速定位所需的信息。通过将 Jira 内容索引到 Elasticsearch 中可以创建统一的数据源并使用文档级别安全性进行搜索[^1]。 #### 基础搜索语法 JIRA 支持多种查询条件组合,允许使用者基于项目、问题类型、状态等多种属性筛选目标数据。基本的搜索语句由字段名称加上运算符以及期望匹配的内容构成。例如 `project = "MyProject"` 表示只返回属于 MyProject 项目的条目;`status != Closed` 则表示排除已关闭的状态之外的所有工单。 #### 高级搜索特性 除了简单的关键词匹配外,还支持更复杂的逻辑表达式如 AND, OR 和 NOT 来构建多条件过滤器。此外,还可以利用通配符(*) 进行模糊查找或是范围限定(> ,< ,>=,< =)。对于日期类型的字段,则可以通过相对时间概念简化输入方式,像 last week 或 next month 等自然语言描述。 #### 结果展示与导出 完成一次有效的检索后,系统将以列表形式呈现符合条件的结果集,默认按照最近更新排序。用户可以选择不同的视图模式查看细节信息,并能进一步调整列布局适应个人偏好。更重要的是,所有经过处理过的报告都可以方便地保存成 PDF 文件或者 CSV 数据表格用于离线分析。 ```python import requests def search_jira_issues(jql_query): url = 'https://your-domain.atlassian.net/rest/api/3/search' headers = { 'Authorization': 'Bearer YOUR_API_TOKEN', 'Content-Type': 'application/json' } params = {'jql': jql_query} response = requests.get(url, headers=headers, params=params) if response.status_code == 200: issues = response.json().get('issues', []) for issue in issues: print(f"{issue['key']}: {issue['fields']['summary']}") else: print("Failed to retrieve data") search_jira_issues("project=TEST AND status=open") ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值