基于小波变换的降噪方法
通过对小波变换的分析,我们可以得出这样一个结论:小波变换其实就是一组滤波器组,一个低通滤波器和一系列带通滤波器(高通滤波器)。通过这组滤波器,小波变换对输入信号进行分频,将信号分解成高频的细节部分和低频的概貌部分,但是输入信号在时域内的主要特性没有改变。除此之外,小波变换与短时傅立叶变换相比有以下几个优势:
1、小波变换的时域特性远远优于短时傅立叶变换。通过小波变换,我们可以得到信号在时域上的主要特性,例如信号的奇异性(信号奇异性是指信号在某处有间断或某阶导数不连续。奇异点即突变点,往往包含了信号的重要特征,输出信号发生突变)等等,而对于短时傅立叶变换,几乎不能得到信号在时域上的特性。
2、小波变换不需要加窗。为了能够得到输入信号在时域上的主要特性,我们往往要运用短时傅立叶变换,即:在对输入信号进行傅立叶变换前先对原信号进行加窗,例如矩形窗、汉宁窗等将信号分成许多个短段,然后再对每个信号段进行傅立叶变换。这就引入了误差,因为加窗往往会平滑输入信号以致于不能精确地反映输入信号的时域特性和频域特性,而且会造成频谱的泄漏。对于小波变换来说,我们不需要对输入信号进行加窗。因此我们可以避免上述问题,准确地得到输入信号的时域特性,而且在每次小波变换后都将输入信号的频带减半,所以我们也可以粗略的得到信号的频域特性。
3、品质因数 ( )不变性。中心频率的降低,带宽也会相应的变窄,即:具有分析频率降低时视野自动放宽的特点。这是一项很符合实际工作需要的特点,因为如果希望在时域上观看得越细致就越要压缩观察范围,并提高分析频率。这一特点也和人类对感觉信息(如:听觉)的加工特点相一致。而傅立叶变换的品质因数并不是一个常数,因而不具有分析频率降低时视野自动放宽的特点。而且傅立叶变换对周期信号有用,所以傅立叶变换往往只能反映低频信号的特点而对于高频信号往往不能精确的反映其特点。
因此我们可以将语音信号先进行小波变换,得到一组新的语音信号。就其特性相对于原信号来讲,在频域上语音信号的频率范围发生了变化,即缩小了一半,成了带通语音信号;在时域上语音信号中噪音的突变性将被放大,使我们更容易发现噪音,有利于将它们去除。
预备知识
李氏指数 :它是表征信号局部特性的一种度量,其定义如下:设有一正整数 ,如果对于一个信号 存在一个正数 ,使得不等式:
成立,则称 是信号 在 的李氏指数。公式中 为过 的 次多项式, 为一个充分小的量。
如果当 在区间 内均满足上述条件时,则称 在此区间为均匀李
氏指数 。
一些常见信号的李氏指数 :
信号 |
阶跃信号 |