在软件工程中,Tracing指使用特定的日志记录程序的执行信息,与之相近的还有两个概念,它们分别是Logging和Metrics。
- Logging:用于记录离散的事件,包含程序执行到某一点或某一阶段的详细信息,比如,应用程序的调试(debug)信息或错误(error)信息。它是我们诊断问题的依据。
- Metrics:用于记录可聚合的数据,且通常是固定类型的时序数据,每个都是一个逻辑计量单元,或者一个时间段内的柱状图,比如,队列的当前深度可以被定义为一个计量单元,在写入或读取时被更新统计;输入HTTP请求的数量可以被定义为一个计数器,用于简单累加;请求的执行时间可以被定义为一个柱状图,在指定时间片上更新和统计汇总。
- Tracing:用于记录单次请求范围内的处理信息,其中包括服务调用和处理时长等,比如,一次调用远程服务的RPC执行过程;一次实际的SQL查询语句;一次HTTP请求的业务性ID。它是我们排查系统性能问题的利器。
系统架构从单体转变为微服务以后,一次请求往往涉及到多个服务之间的调用。随着服务数量的增多和内部调用链的复杂化,仅凭借日志和性能监控很难做到 “See the Whole Picture”,在进行问题排查或是性能分析的时候,无异于盲人摸象。
分布式追踪系统(Tracing)旨在分析请求背后调用了哪些服务,服务的调用顺序、耗时、错误原因等,帮助开发者直观分析请求链路,快速定位性能瓶颈,逐渐优化服务间依赖,也有助于开发者从更宏观的角度更好地理解整个分布式系统。
早在 2005 年,Google 就在内部部署了一套分布式追踪系统 Dapper,并发表了一篇论文《Dapper, a Large-Scale Distributed Systems Tracing Infrastructure》,阐述了该分布式追踪系统的设计和实现,可以视为分布式追踪领域的鼻祖。随后各大厂商纷纷落地了一些优秀的分布式追踪系统,比如Jaeger(Uber)、Zipkin(twitter)、X-ray(AWS)、SkyWalking等,但各家的分布式追踪方案很可能是互不兼容的,于是诞生了OpenTracing。
1. OpenTracing
OpenTracing是一个轻量级的标准化层,它位于<应用程序/类库>和<追踪或日志分析程序>之间,通过提供平台无关、厂商无关的API,使得开发人员能够方便的添加(或更换)追踪系统的实现,解决不同的分布式追踪系统API不兼容的问题,也使得在通用代码库增加对分布式追踪的支持成为可能。
- 后台无关的一套接口,被跟踪的服务只需要调用这套接口,就可以被任何实现这套接口的跟踪后台(比如Zipkin, Jaeger等等)支持,而作为一个跟踪后台,只要实现了个这套接口,就可以跟踪到任何调用这套接口的服务。
- 标准化了对跟踪最小单位Span的管理:定义了开始Span,结束Span和记录Span耗时的API。
- 标准化了进程间跟踪数据传递的方式:定义了一套API方便跟踪数据的传递。
- 标准化了进程内当前Span的管理:定义了存储和获取当前Span的API。
- 不对编码定标准:不对进程间传递的跟踪数据的编码定标准,不对向后台发送的跟踪数据的编码定标准,让跟踪后台自己决定最适合他们的编码方式。
OpenTracing已进入 CNCF,正在为全球的分布式追踪,提供统一的概念和数据标准,支持多种语言:https://github.com/opentracin