Stable Diffusion的微调方法原理总结

目录

1、Textural Inversion(简易)

2、DreamBooth(完整)

3、LoRA(灵巧)

4、ControlNet(彻底)

5、其他


1、Textural Inversion(简易)

        不改变网络结构,仅改变CLIP中token embedding的字典。在字典中新增一个伪词的embedding,fine-tune这个embedding的值。其他所有可调参数都冻结。

优点:训练量极小,需要的素材就是一张图。完全不改变神经网络中的任何参数。

缺点:效果一般。

TI的简洁激发了很多研究者的灵感,基于TI思路的研究出现了很多。

2、DreamBooth(完整)

        具体做法是,加入一个新词(sks)代表subject,embedding初始值继承原类型的词的embedding。调整了模型中全部可调参数,彻底的让模型学会subject。损失函数加入了监督功能,去监控漂移现象,防止灾难性遗忘“学会新的忘了旧的”。

在LoRA出现前,训练DreamBooth是潮流,但代价较大。

3、LoRA(灵巧)

        LoRA的网络是一种additional network,LoRA训练不改变基础模型的任何参数,只对附加网络内部参数进行调整。在生成图像时,附加网络输出与原网络输出融合,从而改变生成效果。

        由于LoRA是将矩阵压缩到低秩后训练,所以LoRA网络的参数量很小(千分之一),训练速度快。实验发现,低维矩阵对高维矩阵的替代损失不大。所以即便训练的矩阵小,训练效果仍然很好,已成为一种customization image generation范式。LoRA后来在结构上改进出不同的版本,例如LoHA,LyCORIS等。

LoRA详解:https://zhuanlan.zhihu.com/p/632159261

Self-Attention的LoRA微调代码:GitHub - owenliang/pytorch-diffusion: pytorch复现stable diffusion

代码分析:

用于替换的线性层 (Wq, Wk, Wv矩阵):

class CrossAttention(nn.Module):
    def __init__(self,channel,qsize,vsize,fsize,cls_emb_size):
        super().__init__()
        # Wq, Wk, Wv 矩阵使用LoRA微调降低参数量, W + WA * WB
        self.w_q=nn.Linear(channel,qsize)
        self.w_k=nn.Linear(cls_emb_size,qsize)
        self.w_v=nn.Linear(cls_emb_size,vsize)
        self.softmax=nn.Softmax(dim=-1)
        self.z_linear=nn.Linear(vsize,channel)
        self.norm1=nn.LayerNorm(channel)
        # feed-forward结构
        self.feedforward=nn.Sequential(
            nn.Linear(channel,fsize),
            nn.ReLU(),
            nn.Linear(fsize,channel)
        )
        self.norm2=nn.LayerNorm(channel)

找到模型中所有的Wq, Wk, Wv线性层并将其替换为Lora:

if __name__=='__main__':   # 加入LoRA微调的训练过程
    # 预训练模型
    model=torch.load('model.pt')

    # 向nn.Linear层注入Lora
    for name,layer in model.named_modules():
        name_cols=name.split('.')
        # 过滤出cross attention使用的linear权重
        filter_names=['w_q','w_k','w_v']
        if any(n in name_cols for n in filter_names) and isinstance(layer,nn.Linear):   # module名字中存在w_q, w_k, w_v且属于线性层
            # print(name)   # enc_convs.0.crossattn.w_q,enc_convs.0.crossattn.w_k,enc_convs.0.crossattn.w_v,……
            inject_lora(model,name,layer)

Lora具体实现与替换过程:

# Lora实现,封装linear,替换到父module里
class LoraLayer(nn.Module):
    def __init__(self,raw_linear,in_features,out_features,r,alpha):
        super().__init__()
        self.r=r   # 秩数
        self.alpha=alpha   # LoRA分支的权重比例系数
        self.lora_a=nn.Parameter(torch.empty((in_features,r)))   # 可训练参数
        self.lora_b=nn.Parameter(torch.zeros((r,out_features)))
    
        nn.init.kaiming_uniform_(self.lora_a,a=math.sqrt(5))   # WA 矩阵参数需要进行初始化

        self.raw_linear=raw_linear   # 原始模型权重 W
    
    def forward(self,x):    # x:(batch_size,in_features)
        raw_output=self.raw_linear(x)   
        lora_output=x@((self.lora_a@self.lora_b)*self.alpha/self.r)    # LoRA分支:x * (WA * WB * α/r)
        return raw_output+lora_output   # W + LoRA

def inject_lora(model,name,layer):
    name_cols=name.split('.')   # [enc_convs, 0, crossattn, w_q]

    # 逐层下探到linear归属的module
    children=name_cols[:-1]   # [enc_convs, 0, crossattn]
    cur_layer=model 
    for child in children:
        cur_layer=getattr(cur_layer,child)   # 逐层深入得到w_q, w_k, w_v层的属性
    
    #print(layer==getattr(cur_layer,name_cols[-1]))
    lora_layer=LoraLayer(layer,layer.in_features,layer.out_features,LORA_R,LORA_ALPHA)
    setattr(cur_layer,name_cols[-1],lora_layer)   # 把 crossattn 的 w_q/w_k/w_v层 的属性替换为LoraLayer

模型训练过程:冻结非Lora分支的所有参数

    # lora权重的加载
    try:
        restore_lora_state=torch.load('lora.pt')   # 加载训练好的Lora权重(lora_a, lora_b矩阵),enc_convs.0.crossattn.w_q.lora_a等
        model.load_state_dict(restore_lora_state,strict=False)
    except:
        pass 

    model=model.to(DEVICE)

    # 冻结非Lora参数
    for name,param in model.named_parameters():
        if name.split('.')[-1] not in ['lora_a','lora_b']:  # 非LoRA部分不计算梯度
            param.requires_grad=False
        else:
            param.requires_grad=True

模型推理过程:将Lora分支参数合并到原始模型参数中(相加)

if __name__=='__main__':
    # 加载模型
    model=torch.load('model.pt')

    USE_LORA=True

    if USE_LORA:   # 使用LoRA推理
        # 把Linear层替换为Lora
        for name,layer in model.named_modules():
            name_cols=name.split('.')
            # 过滤出cross attention使用的linear权重
            filter_names=['w_q','w_k','w_v']
            if any(n in name_cols for n in filter_names) and isinstance(layer,nn.Linear):
                inject_lora(model,name,layer)

        # lora权重的加载
        try:
            restore_lora_state=torch.load('lora.pt')
            model.load_state_dict(restore_lora_state,strict=False)
        except:
            pass 

        model=model.to(DEVICE)

        # lora权重合并到主模型(把LoRA权重加到原始模型权重中)
        for name,layer in model.named_modules():
            name_cols=name.split('.')

            if isinstance(layer,LoraLayer):   # 找到模型中所有的 LoraLayer 层
                children=name_cols[:-1]
                cur_layer=model 
                for child in children:
                    cur_layer=getattr(cur_layer,child)    # cur_layer = cross attention对象(包含修改过的wq, wk, wv)
                lora_weight=(layer.lora_a@layer.lora_b)*layer.alpha/layer.r   # 计算得到lora分支权重
                before_weight=layer.raw_linear.weight.clone()   # 原始模型权重W
                layer.raw_linear.weight=nn.Parameter(layer.raw_linear.weight.add(lora_weight.T)).to(DEVICE)    # 把Lora参数加到base model的linear weight上
                setattr(cur_layer,name_cols[-1],layer.raw_linear)   # 使用新的合并分支替换原来的两分支Lora结构

4、ControlNet(彻底)

        将神经网络快的不同权重,分别复制到“锁定”副本(locked copy)和“可训练”副本(trainable copy)中。按制定规则集成原图特征并生成新的内容,不会导致生成图和原图看起来毫无关系。

5、其他

  • Custom Diffusion基本建立在DreamBooth的基础上,通过消融实验证明了即使只训练交叉注意力层中的部分矩阵,也有非常好的fine-tune效果,不需要像DreamBooth那样全部参数调整。这种思路也引领了后续的一系列研究,但DreamBooth仍然是当时的范式。
  • 与ControlNet同期有一种方法叫做T-2-l adapter,微调的参数更少,效果较CN差些,比CN发布晚了一点,被ControlNet的光芒遮挡了。
  • LORA的典型修改方案是LyCORIS,这个以二次元人物命名的方法把LoRA的思想应用在卷积层做改进,并且结合了一些其他算法进行了参数调整。
  • 微调方法只是打包起来的tricks。模型建模研究是建构的过程,而不是发现的过程,有很大的自由度,不要被已有做法的说法限制自己的想象。
  • 13
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值