- 博客(11)
- 收藏
- 关注
原创 强大数定理
强大数定理概率论中的一个核心结果既是大数定律,他是说如果 X1,X2,⋯,XnX_1,X_2,\cdots,X_n 是独立同分布且 E[X1]<∞E[X_1]<\infty 那么令 Sn=∑nk=1XnnS_n=\frac{\sum_{k=1}^nX_n}{n} 我们有:(弱大数定理)对任意 ϵ>0\epsilon>0 , P[|Sn−E[X1]|≥ϵ]→1P\left[|S_n-E[X_1]|\
2016-01-05 21:11:28 6666 1
原创 Weyl平均分布准则
介绍设a1,a2,⋯,an,⋯a_1,a_2,\cdots,a_n,\cdots为一组实数列,我们说aia_i在[a,b][a,b]中是平均分布的,如果对任意[c,d]⊂[a,b][c,d]\subset[a,b]我们有: limN→∞1N∑i≤Nδ[c,d](ai)=d−cb−a.\lim_{N\rightarrow\infty}\frac{1}{N}\sum_{i\le N}\delta_{[
2015-06-04 02:11:01 4460
原创 Weyl不等式
介绍设P(n)P(n)是一个实数域上的多项式,我们称如下和式为Weyl和: S=∑n=1Ne2πiP(n).S=\sum_{n=1}^{N}e^{2\pi iP(n)}. Weyl不等式的主要内容即是对如上求和给出一个估计,其可被广泛应用于丢翻图逼近等领域。Weyl不等式定理(Weyl不等式):设aa为整数qq为自然数且满足(a,q)=1(a,q)=1,对任意实数α\alpha和自然数N≥2N\
2015-06-03 00:52:22 3304 2
原创 既不是P也不是NP完全的NP问题
P=?NPP\overset{?}{=}NP问题是计算复杂性理论里面最重要的问题之一,它的重要性在于如果P=NPP=NP是成立的那么life is easy,因为这意味着如果一个问题是容易验证的那么也会容易解决。不过目前的主流观点更倾向于认为P≠NPP\not=NP,因为一方面这是密码学里面很多hard assumption的基础,另一方面现在的很多结果也支持这一结论。本文讨论的问题是:如果P≠
2015-04-23 17:36:44 2157
原创 拉格朗日反演
拉格朗日反演是求关于函数方程的幂级数展开系数非常重要的工具,可以用于组合计数函数的系数提取。形式幂级数对任意域FF我们定义其上的形式幂级数为:f(x)=a0+a1x+⋯+anxn+⋯, ai∈F.f(x)=a_0+a_1x+\cdots+a_nx^n+\cdots,\ a_i\in F. 记所有的形式幂级数为F[[x]]F[[x]].(从交换代数的观点来说F[[x]]F[[x]]实际上是多项式
2015-04-15 01:43:26 5668
原创 Tarjan算法
介绍对任意有向图G=(V,E)G=(V,E),我们定义强连通关系u∼vu\sim v(这里u,v∈Vu,v\in V),当且仅当存在uu到vv的路径以及vv到uu的路径。容易看到这是一个等价关系,因此可以将VV划分成不相交的子集并,我们称每个子集为GG的强连通分支。Tarjan算法作用即是对任意有向图,求出其所有的强连通分支。且其时间复杂度为O(|V|+|E|)O(|V|+|E|)。算法Tarjan
2015-04-11 22:30:02 664
原创 解析组合技巧
解析组合的主要思想是利用数学分析的方法来分析组合对象的性质,主要用于“组合类“的计数问题,它的最基本形式类似初等组合数学里面的母函数方法。我们考察如下问题: 考虑一个n+2n+2边的凸多边形MM,每个顶点标注为0…n+10\ldots n+1(逆时针)。一个三角剖分是将MM分为一系列内部不相交的三角形。问:有多少种剖分方法?这是一个典型的组合计数问题,由于对于任意三角剖分使得MM的每条边属
2015-04-11 15:41:41 1130
原创 从给定随机数中生成新的随机数
我们考察如下问题:给你一个随机数生成器,它可以生成1-5的均匀随机数,如何构造另一个随机数生成器产生1-7的均匀随机数?先上一段python代码:import randomdef output(): a = random.randint(1,5) - 1 b = random.randint(1,5) - 1 c = a+b*5 if(c
2014-10-07 20:28:06 818
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人