差分算子
定义1:设 F={ f(x+z)∣z∈Z} 为一组符号函数集,记 A={ ∑i=0nnifi∣ni∈Z,n∈N,fi∈F} 为 F 生成的自由Abel群,同时其自然地构成 Z 模。
定义2:令 H=Hom(A,A) 为 A 到自身的 Z 同态的全体。容易知道 H 构成环,其乘法运算即为同态的合成,加法定义为:
定义1:设 F={ f(x+z)∣z∈Z} 为一组符号函数集,记 A={ ∑i=0nnifi∣ni∈Z,n∈N,fi∈F} 为 F 生成的自由Abel群,同时其自然地构成 Z 模。
定义2:令 H=Hom(A,A) 为 A 到自身的 Z 同态的全体。容易知道 H 构成环,其乘法运算即为同态的合成,加法定义为: