差分算子

这篇博客介绍了差分算子的概念,包括差分算子的定义和性质。通过定义1展示了差分算子如何从符号函数集中生成自由Abel群。接着,定义2解释了如何将这些算子构成环,并给出了三个重要的映射:恒等同态I、E和Δ。文章还证明了Δ=E-I的关系,并提供了一个定理,说明当函数f(x)的次数为d时,可以唯一地表示为特定形式。最后,博客给出一个例子来说明这些概念。
摘要由CSDN通过智能技术生成

差分算子

定义1:设 F={ f(x+z)zZ} 为一组符号函数集,记 A={ i=0nnifiniZ,nN,fiF} F 生成的自由Abel群,同时其自然地构成 Z 模。

定义2:令 H=Hom(A,A) A 到自身的 Z 同态的全体。容易知道 H 构成环,其乘法运算即为同态的合成,加法定义为:

(f+g)(a)=f(a)+g(a),aA.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值