Weyl不等式

本文介绍了Weyl不等式,这是一个在数论中重要的不等式。定理指出,对于满足特定条件的实数α、整数a和自然数q,存在关于Weyl和的不等式。通过引理1和引理2的证明,展示了如何将和式归约为更低阶多项式的求和,从而进一步理解和应用Weyl不等式。
摘要由CSDN通过智能技术生成

介绍

P(n) 是一个实数域上的多项式,我们称如下和式为Weyl和:

S=n=1Ne2πiP(n).

Weyl不等式的主要内容即是对如上求和给出一个估计,其可被广泛应用于丢翻图逼近等领域。

Weyl不等式

定理(Weyl不等式):设 a 为整数 q 为自然数且满足 (a,q)=1 ,对任意实数 α 和自然数 N2 ,如果 |αa/q|1/q2 ,那么我们有如下结论:

n=1Ne2πiαn210NlogN(1/q+1/N+q/N2)1/2.

为证明Weyl不等式,我们先给出如下引理:

引理1:设 α 为实数,那么对任意自然数 N 我们有:

n=1Ne2πiαnmin{N,12||α||},
这里 ||α|| 表示 α 与最近整数的距离。

证明:如果 α=0 那么上式左边和为

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值