介绍
设 P(n) 是一个实数域上的多项式,我们称如下和式为Weyl和:
S=∑n=1Ne2πiP(n).
Weyl不等式的主要内容即是对如上求和给出一个估计,其可被广泛应用于丢翻图逼近等领域。
Weyl不等式
定理(Weyl不等式):设 a 为整数
∣∣∣∣∑n=1Ne2πiαn2∣∣∣∣≤10NlogN(1/q+1/N+q/N2)1/2.
为证明Weyl不等式,我们先给出如下引理:
引理1:设 α 为实数,那么对任意自然数 N 我们有:
证明:如果 α=0 那么上式左边和为