准备仓促,先记坑,再填坑.我申请的是计算机视觉(深度学习)岗位,一直认为自己的知识水平还可以,真正笔试时,才发现会的太少.
首先从题目本身出发,都是和深度相关的题目,每道题都似曾相识,但又表达不出.每道题或多或少在某些论文中都看过,有印象,但不熟练.先记一下坑,有时间再持续解答.
这次题型有三种,选择题、编程题、和问答题.其中问答题占的比分最高,共六题.一直以来我都不知道深度学习笔试该如何出题,总不能和其他一样,考数据结构啊,什么的.当然数据结构很重要,选择里有的,二叉树啊什么的,但是占的比分都不是很高.重点是问答题.由于在实验室一直做的是病理图像相关的数据,基本就是分类和分割,gan、检测什么的都不是很理解,这次笔试凉凉.我特地给了1小时10分钟时间完成这部分问答题,做完心塞塞,才发现,任重而道远,会的太少,需要学的太多.
问答题一:有一个对花进行细粒度分类的任务,现有30个花种,每类仅20张图片.在不用相机额外采集图片的情况下,如何保证泛化能力的情况下完成该分类?
关于细粒度分类,这篇博客讲述的比较好http://www.iteye.com/news/32314
问答题二:请描述生成对抗网络GAN、loss函数、难训练的原因?
问答题三:请分别描述Mask RCNN中ROI Align 和Fast RCNN中的Roi Pooling,并说明对比两者之间的区别.
问答题四:回归问题中的Smooth L1 Loss相比于L2 Loss的优势在什么地方,为什么Faster RCNN中使用Smooth L1 Loss来进行box回归?
问答题五:如何用计算机求解,如有推导,请写下推到过程
问答题六:facebook被爆出泄露数据,可以利用这些数据操纵美国大选,分析操控过程:1)可能用到了哪方面的数据?2)如果你来做,准备如何构建模型?描述 从数据分析导如何实现操控的过程.