m基于yolov2深度学习的细胞检测系统matlab仿真,带GUI操作界面

目录

1.算法仿真效果

2.算法涉及理论知识概要

3.MATLAB核心程序

4.完整算法代码文件获得


1.算法仿真效果

matlab2022a仿真结果如下:

2.算法涉及理论知识概要

       基于YOLOv2的细胞检测系统是一种利用深度学习技术,特别是卷积神经网络(CNN),对显微镜图像中的细胞进行自动定位和识别的计算机视觉应用。YOLO(You Only Look Once)是一种单阶段的目标检测算法,其第二版(YOLOv2)在原版的基础上进行了诸多改进,提高了检测精度和速度。YOLOv2采用了Darknet-19作为其主干网络,这是一种深度残差网络(ResNet)变体,由19个卷积层组成。网络结构如下:

YOLOv2在主干网络Darknet-19的基础上,通过以下方式实现多尺度特征提取和预测:

  1. 空间金字塔池化(SPP):在主干网络后添加一个空间金字塔池化层,提取不同尺度的特征,增强模型对不同大小细胞的检测能力。SPP通过在不同大小的网格上进行最大池化操作,生成多尺度特征图。

  2. 特征金字塔网络(FPN):YOLOv2通过上采样主干网络的深层特征并与浅层特征融合,构建特征金字塔,实现多尺度目标检测。

3.MATLAB核心程序

................................................................
sidx             = randperm(size(FACES,1));% 打乱数据集索引
idx              = floor(0.75 * length(sidx));% 将75%的数据用作训练集
train_data       = FACES(sidx(1:idx),:);% 选取训练集
test_data        = FACES(sidx(idx+1:end),:);% 选取测试集
% 图像大小
image_size       = [224 224 3];
num_classes      = size(FACES,2)-1;% 目标类别数量
anchor_boxes = [% 预定义的锚框大小
    43 59
    18 22
    23 29
    84 109
    ];
% 加载预训练的 ResNet-50 模型
load mat\Resnet50.mat
 
% 用于目标检测的特征层
featureLayer = 'activation_40_relu';
% 构建 YOLOv2 网络
lgraph       = yolov2Layers(image_size,num_classes,anchor_boxes,Initial_nn,featureLayer);

options = trainingOptions('sgdm', ...
    'MiniBatchSize', 8, ....
    'InitialLearnRate',1e-4, ...
    'MaxEpochs',200,...
    'CheckpointPath', Folder, ...
    'Shuffle','every-epoch', ...
    'ExecutionEnvironment', 'gpu');% 设置训练选项
% 训练 YOLOv2 目标检测器
[detector,info] = trainYOLOv2ObjectDetector(train_data,lgraph,options);




save model.mat detector
0Y_022m

4.完整算法代码文件获得

V

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我爱C编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值