目录
1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):
仿真操作步骤可参考程序配套的操作视频。
2.算法涉及理论知识概要
完整的SC-FDE单载波频域均衡通信链路的设计和实现,包括UW序列的设计、QPSK调制、帧同步、定时同步、载波同步、SNR估计和MMSE信道估计等环节。本文首先介绍了SC-FDE通信系统的基本原理和频域均衡的概念,然后详细介绍了各个环节的设计和实现步骤,并通过仿真实验验证了系统的可行性和性能。最后,对系统的优化和拓展进行了讨论,为进一步提高系统的性能和应用到更广泛的通信领域中提供了思路。
SC-FDE是一种常见的OFDM调制方式,它可以将数据分成多个子载波进行传输,从而实现高效的数据传输。在SC-FDE中,采用单载波频域均衡技术可以有效地消除多径效应和频域失真,提高系统的传输性能。本文旨在介绍完整的SC-FDE单载波频域均衡通信链路的设计和实现,包括UW序列的设计、QPSK调制、帧同步、定时同步、载波同步、SNR估计和MMSE信道估计等环节,以验证系统的可行性和性能。
2.1 单载波频域均衡
在SC-FDE中,使用单载波频域均衡技术可以有效地消除多径效应和频域失真,提高系统的传输性能。具体来说,单载波频域均衡可以通过在接收端对接收信号进行频域均衡,消除信道对信号的影响,从而提高系统的可靠性和传输速率。在频域均衡中,通常使用MMSE等算法进行信道估计和均衡,以提高均衡的精度和准确性。
2.2 UW序列
UW序列是一种常见的同步序列,它可以用于帧同步、定时同步和载波同步等环节。在SC-FDE通信系统中,需要使用UW序列进行同步,以确保接收端正确地解码接收到的信号。UW序列的长度和参数可以根据具体的应用需求进行选择,通常采用二进制序列或者伪随机序列。
在SC-FDE通信系统中,需要使用UW序列进行同步,以确保接收端正确地解码接收到的信号。UW序列通常采用二进制序列或者伪随机序列,其长度和参数可以根据具体的应用需求进行选择。在本文中,我们采用长度为32的二进制UW序列,
2.3 QPSK调制
在SC-FDE通信系统中,采用QPSK调制可以将数字信号分为四个不同的相位状态,实现高效的数据传输。具体来说,QPSK调制可以表示为:
在SC-FDE通信系统中,采用QPSK调制可以将数字信号分为四个不同的相位状态,实现高效的数据传输。在本文中,我们采用QPSK调制对数据进行调制,具体来说,我们将每两个比特映射为一个符号,其中00映射为$1+j$,01映射为$1-j$,10映射为$-1+j$,11映射为$-1-j$。
2.4 帧同步、定时同步和载波同步
在SC-FDE通信系统中,需要进行帧同步、定时同步和载波同步等环节,以确保接收端能够正确地解码接收到的信号。帧同步是指接收端能够识别传输帧的开始和结束,定时同步是指接收端能够正确地识别信号的时序,载波同步是指接收端能够正确地识别信号的频率。这些同步环节通常使用UW序列或者导频序列进行实现,以确保接收端能够准确地识别信号的时序和频率。
2.5 SNR估计
在SC-FDE通信系统中,需要对信号的信噪比进行估计,以便在接收端进行适当的信号处理和均衡。信噪比可以通过接收信号的能量和噪声功率之比来进行估计,通常采用均方误差(MSE)法或者最小二乘(LS)法进行估计。
在SC-FDE通信系统中,需要对信号的信噪比进行估计,以便在接收端进行适当的信号处理和均衡。在本文中,我们使用均方误差(MSE)法进行SNR估计。具体来说,我们通过比较接收信号和原始信号的误差,计算信号的信噪比。
2.6 MMSE信道估计
在SC-FDE通信系统中,需要对信道进行估计和均衡,以消除信道对信号的影响。常用的信道估计算法包括最小二乘(LS)法、最小均方误差(MMSE)法和最大似然(ML)法等。在SC-FDE中,使用MMSE算法可以实现更加精确和准确的信道估计和均衡,从而提高系统的传输性能。
3.MATLAB核心程序
.........................................................
global modtype;
modtype = 5;%2:QPSK,3:8PSK,4:16PSK,5:32PSK
if modtype == 2;%2:QPSK,3:8PSK,4:16PSK,5:32PSK
NAME = 'QPSK';
end
if modtype == 3;%2:QPSK,3:8PSK,4:16PSK,5:32PSK
NAME = '8PSK';
end
if modtype == 4;%2:QPSK,3:8PSK,4:16PSK,5:32PSK
NAME = '16PSK';
end
if modtype == 5;%2:QPSK,3:8PSK,4:16PSK,5:32PSK
NAME = '32PSK';
end
SNR = 40;
%UW长度
LEN_UW = 64;
%数据长度
LEN_data = 448;
%FFT长度
LEN_fft = LEN_data+LEN_UW;
% 数据帧数
LEN_frame= 32;
%数据负载
data = randi([0 1],modtype*LEN_data*LEN_frame,1);
%QPSK
Dmap_qpsk= func_PSK(data,LEN_data,LEN_frame);
figure;
subplot(231);
plot(real(Dmap_qpsk),imag(Dmap_qpsk),'b*');
title([NAME,'星座图']);
%UW序列
UW = func_UW(LEN_UW);
%组帧
LEN_ud = LEN_UW*2+LEN_data;
frame = func_frame_gen(UW,Dmap_qpsk,LEN_frame,LEN_ud);
subplot(232);
plot(real(Rdata_dw),imag(Rdata_dw),'b*');
title([NAME,'过信道星座图']);
%模拟频偏相偏
LEN_ALL = LEN_ud*LEN_frame;
%频偏
Fre_offset = 0.9;
%相偏
Phase_offset = pi/6;
Rdata_dw2 = func_add_fre_phase_offset(Rdata_dw,LEN_ALL,Fre_offset,Phase_offset);
...............................................................
% 定时同步
subplot(312);
Time_idx=1:1:Time_N;
plot(Time_idx,M(Time_idx));
grid on;
title([NAME,'定时同步后相关峰']);
xlabel('定点d');
%信道频偏估计与补偿
[Time_synC,PC,RC,MC] = func_time_syn(Rdata_dw3,LEN_UW,Time_N,Time_N2);
subplot(313);
Time_idx=1:1:Time_N;
plot(Time_idx,MC(Time_idx));
grid on;
title([NAME,'频偏补偿后相关峰']);
xlabel('定点d');
0sj_044m
4.完整算法代码文件获得
V