UVa1664/LA6070 Conquer a New Region

UVa1664/LA6070 Conquer a New Region

题目链接

  本题是2012年icpc亚洲区域赛长春赛区的题目

题意

  n(n≤200000)个城市形成一棵树,每条边有权值C(i,j)。任意两个点的容量S(i,j)定义为i与j唯一通路上容量的最小值。找一个点(它将成为中心城市),使得它到其他所有点的容量之和最大。

分析

  本题直接思路是:找到边权最小的边 ( u , v ) (u,v) (u,v),记其边权为 w w w,将此边拿掉后变成两棵子树,设两子树的结点数分别为 c [ u ] c[u] c[u] c [ v ] c[v] c[v],两子树的最大容量之和分别为 d [ u ] d[u] d[u] d [ v ] d[v] d[v],根节点要么在子树 u u u要么在子树 v v v,因此答案为 m a x ( c [ u ] ∗ w + d [ v ] ,    c [ v ] ∗ w + d [ u ] ) max(c[u]*w+d[v],\;c[v]*w+d[u]) max(c[u]w+d[v],c[v]w+d[u]),递归处理子树即可求出 d [ u ] d[u] d[u] d [ v ] d[v] d[v]最终得到答案。
  但这时候的递归就不好写了,如果主体思路还是上面这样的话,考虑到结点数很大(n≤200000),不超时的方法应该是遍历排序后的树边顺便就把答案求出来了。
  确实能做到遍历排序后的树边顺便就把答案求出来,思路是利用并查集消除递归:把树边按权值从大到小排序,然后依次遍历各条边,根据 m a x ( c [ u ] ∗ w + d [ v ] ,    c [ v ] ∗ w + d [ u ] ) max(c[u]*w+d[v],\;c[v]*w+d[u]) max(c[u]w+d[v],c[v]w+d[u])将两子树合并。

AC 代码

#include <iostream>
#include <algorithm>
using namespace std;

#define N 200010
int a[N], b[N], c[N], e[N], f[N], n; long long d[N], w[N];

bool cmp(int i, int j) {
    return w[i] > w[j];
}

int find(int x) {
    return x == f[x] ? x : f[x] = find(f[x]);
}

void solve() {
    for (int i=1; i<=n; ++i) {
        c[i] = 1; d[i] = 0; f[i] = i;
        if (i < n) cin >> a[i] >> b[i] >> w[i], e[i] = i;
    }
    sort(e+1, e+n, cmp);
    long long ans = 0;
    for (int i=1; i<n; ++i) {
        int u = find(a[e[i]]), v = find(b[e[i]]);
        ans = d[v] = max(c[u] * w[e[i]] + d[v], c[v] * w[e[i]] + d[u]); c[v] += c[u]; f[u] = v;
    }
    cout << ans << endl;
}

int main() {
    ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    while (cin >> n) solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值