牛客网-腾讯编程题

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/hling_so/article/details/79556824

1 编码

题目描述

假定一种编码的编码范围是a ~ y的25个字母,从1位到4位的编码,如果我们把该编码按字典序排序,形成一个数组如下: a, aa, aaa, aaaa, aaab, aaac, … …, b, ba, baa, baaa, baab, baac … …, yyyw, yyyx, yyyy 其中a的Index为0,aa的Index为1,aaa的Index为2,以此类推。 编写一个函数,输入是任意一个编码,输出这个编码对应的Index.
输入描述:
输入一个待编码的字符串,字符串长度小于等于100.
输出描述:
输出这个编码的index
示例1
输入
baca
输出
16331

思路

参考

实现

#include<iostream>
#include<string>
#include<vector>
#include<algorithm>

using namespace std;

int main() {
    string s;
    cin >> s;
    if (s.empty() || s.size() > 4) return 0;
    int times = 25;
    int k = 0, res = 0;
    for (int i = 0, p = 4; i < s.size(); i++,p--) {
        k = s[i] - 'a';
        int pre = 0;
        for (int j = 0; j < p; j++) {
            pre += pow(times, j);
        }
        res += k * pre;
        if (i != 0) res++;
    }
    cout << res;
    return 0;
}

2. 素数对

题目描述

给定一个正整数,编写程序计算有多少对质数的和等于输入的这个正整数,并输出结果。输入值小于1000。
如,输入为10, 程序应该输出结果为2。(共有两对质数的和为10,分别为(5,5),(3,7))
输入描述:
输入包括一个整数n,(3 ≤ n < 1000)
输出描述:
输出对数
示例1
输入
10
输出
2

思路

实现

#include<iostream>
#include<algorithm>

using namespace std;

bool isPrime(int n) {
    for (int i = 2; i <= sqrt(n); i++) {
        if (n % i == 0)
            return false;
    }
    return true;
}

int main() {
    // read the num
    int num;
    cin >> num;

    // count the pairs
    int count = 0;
    for (int i = 2; i <= num / 2; i++) {
        if (isPrime(i) && isPrime(num - i)) {
            count++;
        }
    }

    // print the res
    cout << count;
    return 0;
}

2.

#include<iostream>
#include<string>
#include<vector>
#include<algorithm>

using namespace std;

// DP
int main() {
    string s;
    while (cin >> s) { // read data
        int n = s.size();
        if (n == 0) return 0;

        // DP part
        vector<vector<int>> dp(n, vector<int>(n, 0));  // dp[i][j] 表示(i, j)之间回文串的最长长度
        for (int i = n - 1; i >= 0; i--) {
            dp[i][i] = 1;
            for (int j = i + 1; j < n; j++) {
                if (s[i] == s[j])
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                else
                    dp[i][j] = max(dp[i][j - 1], dp[i + 1][j]);
            }
        }

        // print the result
        cout << n - dp[0][n - 1] << endl;
        s.clear();
    }
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页