图像处理--傅里叶图像及傅里叶变换

本文深入探讨了傅里叶变换在图像处理领域的应用。通过介绍傅里叶图像的概念,阐述了如何利用傅里叶变换进行频域分析,以揭示图像的频率成分。此外,还讨论了快速傅里叶变换(FFT)在实际计算中的优势,以及如何通过滤波器操作来改善图像质量,如消除噪声和增强特定特征。
摘要由CSDN通过智能技术生成

二维离散傅里叶变换的旋转性
源码如下:
>> clear
>> %构造原始图像
 I=zeros(256,256);
I(28:228,108:148)=1;
subplot(2,2,1),imshow(I);
 
 
%求原始图像的傅里叶频谱
J=fft2(I);
F=abs(J);
J1=fftshift(F);
subplot(2,2,2),imshow(J1,[5,50]);
 
 
 %对原始图像进行旋转
 K=imrotate(I,315,'bilinear','crop');
subplot(2,2,3),imshow(K);
 
 
 %求旋转后图像的傅里叶频谱
K1=fft2(K);
F=abs(K1);
K2=fftshift(F);
subplot(2,2,4),imshow(K2,[5,50]);
 
 
%加标题,可以加在subplot之后。
subplot(2,2,1),title('原始图像');
subplot(2,2,2),title('原图像的傅里叶频谱');
subplot(2,2,3),title('旋转后的图像');
subplot(2,2,4),title('旋转后图像的傅里叶频谱');
代码结果图像:




                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值