图像复原算法

7.1 逆滤波 (Inverse Filtering)

介绍

逆滤波是一种基本的图像复原方法,用于从退化图像中恢复原始图像。它通过逆向应用退化过程中的滤波器来恢复图像。

原理

逆滤波假设图像在退化过程中受到线性且时不变的滤波器影响,并尝试通过逆向应用该滤波器来恢复原始图像。逆滤波对噪声非常敏感,当噪声较大时,恢复效果可能不理想。

公式
  • 设退化模型为:

其中,G(u,v) 是退化图像的傅里叶变换,H(u,v) 是退化函数,F(u,v) 是原始图像的傅里叶变换。

  • 逆滤波的复原过程为:

案例

使用Python和OpenCV进行逆滤波图像复原。

代码解析
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图像
image = cv2.imread('blurred_image.jpg', 0)

# 进行傅里叶变换
f = np.fft.fft2(image)
fshift = np.fft.fftshift(f)

# 模拟退化函数H(u,v)
rows, cols = image.shape
crow, ccol = rows // 2, cols // 2
H = np.zeros((rows, cols), np.float32)
H[crow - 30:crow + 30, ccol - 30:ccol + 30] = 1

# 应用逆滤波
fshift = fshift / H
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)
img_back = np.abs(img_back)

# 显示结果
plt.subplot(121), plt.imshow(image, cmap='gray')
plt.title('Blurred Image'), plt.xticks([]), plt.yticks([])

plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Restored Image'), plt.xticks([]), plt.yticks([])

plt.show()
生活场景案例

逆滤波在去除图像中的简单模糊、恢复轻度失真的图像中有应用,但对噪声非常敏感。

总结

逆滤波是一种基本的图像复原方法,适用于已知退化函数且噪声较小的情况,但在高噪声条件下效果不佳。

7.2 维纳滤波 (Wiener Filtering)

介绍

维纳滤波是一种最优复原方法,通过最小化均方误差来恢复被噪声和退化影响的图像。维纳滤波能够在一定程度上抑制噪声,提升复原效果。

原理

维纳滤波通过平衡噪声与图像的信号,试图在复原过程中减少噪声影响。它结合了逆滤波和噪声抑制的优点,是一种经典的复原算法。

公式

维纳滤波器的表达式为:

其中,H∗(u,v) 是退化函数的共轭,Sn(u,v)是噪声功率谱,Sf(u,v)是原始图像的功率谱。

案例

使用Python和SciPy进行维纳滤波图像复原。

代码解析
import cv2
import numpy as np
from scipy.signal import wiener
import matplotlib.pyplot as plt

# 读取图像
image = cv2.imread('noisy_blurred_image.jpg', 0)

# 应用维纳滤波
restored_image = wiener(image, (5, 5))

# 显示结果
plt.subplot(121), plt.imshow(image, cmap='gray')
plt.title('Noisy Blurred Image'), plt.xticks([]), plt.yticks([])

plt.subplot(122), plt.imshow(restored_image, cmap='gray')
plt.title('Restored Image'), plt.xticks([]), plt.yticks([])

plt.show()
生活场景案例

维纳滤波在去除噪声和模糊的图像复原中有广泛应用,适用于各种医学图像处理、卫星图像处理等场景。

总结

维纳滤波结合了逆滤波和噪声抑制,适用于含噪声图像的复原,是一种最优的线性复原方法。

7.3 盲复原 (Blind Deconvolution)

介绍

盲复原是一种高级的图像复原方法,不需要先验知识,可以在不完全知道退化函数的情况下恢复图像。它通常通过迭代优化来估计退化函数和原始图像。

原理

盲复原通过反复迭代,交替估计退化函数和原始图像,从而逐步恢复被退化的图像。由于退化函数未知,盲复原的算法复杂度较高,但适应性更强。

公式

盲复原通常通过优化如下目标函数:

其中,G 是退化图像,F 是估计的原始图像,H 是估计的退化函数,R(F) 是正则化项,λ 是正则化参数。

案例

使用Python和OpenCV进行盲复原。

代码解析
import cv2
import numpy as np
from skimage import restoration
import matplotlib.pyplot as plt

# 读取图像
image = cv2.imread('blurred_image.jpg', 0)

# 模拟退化函数
psf = np.ones((5, 5)) / 25

# 进行盲复原
restored_image, _ = restoration.unsupervised_wiener(image, psf)

# 显示结果
plt.subplot(121), plt.imshow(image, cmap='gray')
plt.title('Blurred Image'), plt.xticks([]), plt.yticks([])

plt.subplot(122), plt.imshow(restored_image, cmap='gray')
plt.title('Restored Image'), plt.xticks([]), plt.yticks([])

plt.show()

生活场景案例

盲复原广泛应用于摄影图像的去模糊、医学图像的恢复和遥感图像的处理,是一种强大且灵活的复原方法。

总结

盲复原在不知道退化函数的情况下,通过迭代优化实现图像的复原,适用于各种复杂场景。

数字图像在获取的过程中,由于光学系统的像差、 光学成像衍射、 成像系统的非线性畸变、 摄影胶片的感光的非线性、 成像过程的相对运动、 大气的湍流效应、环境随机噪声等原因, 图像会产生一定程度的退化。因此,必须采取一定的方法尽可能地减少或消除图像质量的下降,恢复图像的本来面目, 这就是图像复原, 也称为图像恢复图像复原图像增强有类似的地方, 都是为了改善图像。但是它们又有着明显的不同。图像复原是试图利用退化过程的先验知识使已退化的图像恢复本来面目,即根据退化的原因, 分析引起退化的环境因素,建立相应的数学模型, 并沿着使图 像降质的逆过程恢复图像。从图像质量评价的角度来看, 图像 复原就是提高图像的可理解性。而图像增强的目的是提高视感 质量,图像增强的过程基本上是一个探索的过程, 它利用人的心理状态和视觉系统去控制图像质量, 直到人们的视觉系统满意为止。 图像复原是利用退化现象的某种先验知识,建立退化现象的数学模型,再根据模型进行反向的推演运算,以恢复原来的景物图像。因而,图像复原可以理解为图像降质过程的反向过程。建立图像复原的反向过程的数学模型,就是图像复原的主 要任务。经过反向过程的数学模型的运算,要想恢复全真的景物图像比较困难。所以, 图像复原本身往往需要有一个质量标 准, 即衡量接近全真景物图像的程度,或者说,对原图像的估 计是否到达最佳的程度。 由于引起退化的因素众多而且性质不同,为了描述图像退化过程所建立的数学模型往往多种多样,而恢复的质量标准也往往存在差异性,因此图像复原是一个复杂的数学过程,图像复原的方法、技术也各不相同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值