线性代数(3)—— 逆矩阵、伴随矩阵、初等矩阵

  • 参考:张宇高等数学基础30讲

1. 矩阵的逆

1.1 逆矩阵的定义

  • 定义:设 A , B \pmb{A},\pmb{B} AAA,BBB 是n阶方阵 E \pmb{E} EEE 是n阶单位阵,若 A B = B A = E \pmb{A}\pmb{B} = \pmb{B}\pmb{A} = \pmb{E} AAABBB=BBBAAA=EEE,则称 A \pmb{A} AAA可逆矩阵,并称 B \pmb{B} BBB A \pmb{A} AAA逆矩阵,并称 B \pmb{B} BBB A \pmb{A} AAA 的逆矩阵,且逆矩阵是唯一的,记作 A − 1 \pmb{A}^{-1} AAA1注意逆矩阵是相互的,即有
    { A − 1 = B B − 1 = A \left\{ \begin{aligned} \pmb{A}^{-1} = \pmb{B} \\ \pmb{B}^{-1} = \pmb{A} \end{aligned} \right. {AAA1=BBBBBB1=AAA
  • A \pmb{A} AAA 可逆的充要条件 ∣ A ∣ ≠ 0 |\pmb{A}| \neq 0 AAA=0,当 ∣ A ∣ ≠ 0 |\pmb{A}| \neq 0 AAA=0 时, A \pmb{A} AAA 可逆,且
    A − 1 = 1 ∣ A ∣ A ∗ \pmb{A}^{-1} = \frac{1}{|\pmb{A}|}\pmb{A}^* AAA1=AAA1AAA
    其中 A ∗ \pmb{A}^* AAA 是矩阵 A \pmb{A} AAA 的伴随矩阵

1.2 逆矩阵性质与重要公式

  • 欲利用定义法证明 A − 1 = B \pmb{A}^{-1} = \pmb{B} AAA1=BBB,只需证明 A B = E \pmb{A}\pmb{B} = \pmb{E} AAABBB=EEE 即可,下面用此方法证明一些常用性质和公式。设 A , B \pmb{A},\pmb{B} AAA,BBB 是同阶可逆矩阵,则

    公式证明
    ( A − 1 ) − 1 = A (\pmb{A}^{-1})^{-1} = \pmb{A} (AAA1)1=AAA A − 1 A = E \pmb{A}^{-1}\pmb{A} = \pmb{E} AAA1AAA=EEE
    ( k A ) − 1 = 1 k A − 1    , k ≠ 0 (k\pmb{A})^{-1} = \frac{1}{k}\pmb{A}^{-1}\space\space ,k\neq 0 (kAAA)1=k1AAA1  ,k=0 ( k A ) − 1 ⋅ 1 k A − 1 = E (k\pmb{A})^{-1} · \frac{1}{k}\pmb{A}^{-1} = \pmb{E} (kAAA)1k1AAA1=EEE
    ( A B ) (\pmb{A}\pmb{B}) (AAABBB) 也可逆,且 ( A B ) − 1 = B − 1 A − 1 (\pmb{A}\pmb{B})^{-1} = \pmb{B}^{-1}\pmb{A}^{-1} (AAABBB)1=BBB1AAA1 A B B − 1 A − 1 = A ( B B − 1 ) A − 1 = A A − 1 = E \pmb{A}\pmb{B}\pmb{B}^{-1}\pmb{A}^{-1} =\pmb{A}(\pmb{B}\pmb{B}^{-1})\pmb{A}^{-1} = \pmb{A}\pmb{A}^{-1} = \pmb{E} AAABBBBBB1AAA1=AAA(BBBBBB1)AAA1=AAAAAA1=EEE
    A T \pmb{A}^T AAAT 也可逆,且 ( A T ) − 1 = ( A − 1 ) T (\pmb{A}^T)^{-1} = (\pmb{A}^{-1})^T (AAAT)1=(AAA1)T A T ( A − 1 ) T = ( A − 1 A ) T = E T = E \pmb{A}^T(\pmb{A}^{-1})^T = (\pmb{A}^{-1}\pmb{A})^T = \pmb{E}^T = \pmb{E} AAAT(AAA1)T=(AAA1AAA)T=EEET=EEE
    ∣ A − 1 ∣ = ∣ A ∣ − 1     , ∣ A ∣ − 1 ≠ 0 \vert\pmb{A}^{-1}\vert = \vert\pmb{A}\vert^{-1}\space\space\space,\vert\pmb{A}\vert^{-1}\neq 0 AAA1=AAA1   ,AAA1=0 ∣ A − 1 A ∣ = ∣ E ∣ ⇒ ∣ A − 1 ∣ ∣ A ∣ = 1 ⇒ ∣ A − 1 ∣ = ∣ A ∣ − 1 \vert\pmb{A}^{-1}\pmb{A}\vert = \vert\pmb{E}\vert \Rightarrow \vert\pmb{A}^{-1}\vert\vert\pmb{A}\vert = 1 \Rightarrow \vert\pmb{A}^{-1}\vert = \vert\pmb{A}\vert^{-1} AAA1AAA=EEEAAA1AAA=1AAA1=AAA1

1.3 用定义求逆矩阵

  • 定义法适用于求抽象矩阵的逆矩阵
    方法说明
    依定义即求一个矩阵 B \pmb{B} BBB,使得 A B = E \pmb{A}\pmb{B} = \pmb{E} AAABBB=EEE,则 A \pmb{A} AAA 可逆,且 A − 1 = B \pmb{A}^{-1} = \pmb{B} AAA1=BBB
    A \pmb{A} AAA 分解成若干个可逆矩阵的乘积因为两个可逆矩阵的乘积仍是可逆矩阵,即若 A = B C \pmb{A} = \pmb{B}\pmb{C} AAA=BBBCCC,其中 B , C \pmb{B},\pmb{C} BBB,CCC 均可逆,则 A \pmb{A} AAA 可逆,且 A − 1 = ( B C ) − 1 = C − 1 B − 1 \pmb{A}^{-1} = (\pmb{B}\pmb{C})^{-1} = \pmb{C}^{-1}\pmb{B}^{-1} AAA1=(BBBCCC)1=CCC1BBB1
    一些简单分块矩阵的逆 A , B \pmb{A},\pmb{B} AAA,BBB 均是可逆方阵,则 [ A O O B ] − 1 = [ A − 1 O O B − 1 ] ,     [ O A B O ] − 1 = [ O A − 1 B − 1 O ] \begin{bmatrix}\pmb{A} &\pmb{O} \\\pmb{O} &\pmb{B}\end{bmatrix}^{-1} =\begin{bmatrix}\pmb{A}^{-1} &\pmb{O} \\\pmb{O} &\pmb{B}^{-1}\end{bmatrix},\space\space\space\begin{bmatrix}\pmb{O} &\pmb{A} \\\pmb{B} &\pmb{O}\end{bmatrix}^{-1} =\begin{bmatrix}\pmb{O} &\pmb{A}^{-1} \\\pmb{B}^{-1} &\pmb{O}\end{bmatrix} [AAAOOOOOOBBB]1=[AAA1OOOOOOBBB1],   [OOOBBBAAAOOO]1=[OOOBBB1AAA1OOO]

1.4 例题

  1. A , B \pmb{A},\pmb{B} AAA,BBB 均是n阶方阵,且 A B = A + B \pmb{A}\pmb{B} = \pmb{A}+\pmb{B} AAABBB=AAA+BBB。证明 A − E \pmb{A}-\pmb{E} AAAEEE 可逆,并求 ( A − E ) − 1 (\pmb{A}-\pmb{E})^{-1} (AAAEEE)1
    思路:用定义法,找 ( A − E ) (\pmb{A}-\pmb{E}) (AAAEEE) 乘以什么得 E \pmb{E} EEE
    ∵ A B = A + B ∴ A B − A − B + E = E ∴ A ( B − E ) − ( B − E ) = E ∴ ( A − E ) ( B − E ) = E ∴ ( A − E ) − 1 = B − E \begin{aligned} &\because \pmb{A}\pmb{B} = \pmb{A}+\pmb{B}\\ &\therefore \pmb{A}\pmb{B} - \pmb{A}-\pmb{B} + \pmb{E} = \pmb{E}\\ &\therefore \pmb{A}(\pmb{B} - \pmb{E})- (\pmb{B} - \pmb{E}) = \pmb{E}\\ &\therefore (\pmb{A} - \pmb{E})(\pmb{B} - \pmb{E}) = \pmb{E}\\ &\therefore (\pmb{A}-\pmb{E})^{-1} = \pmb{B} - \pmb{E} \end{aligned} AAABBB=AAA+BBBAAABBBAAABBB+EEE=EEEAAA(BBBEEE)(BBBEEE)=EEE(AAAEEE)(BBBEEE)=EEE(AAAEEE)1=BBBEEE
    其中倒数第二个等式 ( A − E ) ( B − E ) = E (\pmb{A} - \pmb{E})(\pmb{B} - \pmb{E}) = \pmb{E} (AAAEEE)(BBBEEE)=EEE 成立就证明了 A − E \pmb{A}-\pmb{E} AAAEEE 可逆。也可在此式两边取行列式,则有
    ∣ A − E ∣ = 1 ∣ B − E ∣ ≠ 0 ⇒ ( A − E ) 可 逆 |\pmb{A} - \pmb{E}| = \frac{1}{|\pmb{B} - \pmb{E}|} \neq 0 \Rightarrow (\pmb{A}-\pmb{E})可逆 AAAEEE=BBBEEE1=0(AAAEEE)
  2. A , B \pmb{A},\pmb{B} AAA,BBB 是同阶可逆矩阵,且 A − 1 + B − 1 \pmb{A}^{-1}+\pmb{B}^{-1} AAA1+BBB1 是可逆矩阵,证明 A + B \pmb{A}+\pmb{B} AAA+BBB 是可逆矩阵,并求 ( A + B ) − 1 (\pmb{A}+\pmb{B})^{-1} (AAA+BBB)1
    思路:用拆分法,找出可逆矩阵 M , N \pmb{M},\pmb{N} MMM,NNN 使得 A = M N \pmb{A} = \pmb{M}\pmb{N} AAA=MMMNNN,则 A − 1 = N − 1 M − 1 \pmb{A}^{-1} = \pmb{N}^{-1}\pmb{M}^{-1} AAA1=NNN1MMM1
    ∵ A , B 可 逆 ∴ A + B = A ( E + A − 1 B ) = A ( B − 1 + A − 1 ) B ∵ A , ( B − 1 + A − 1 ) , B 都 可 逆 ∴ ( A + B ) − 1 = B − 1 ( B − 1 + A − 1 ) − 1 A − 1 \begin{aligned} &\because \pmb{A},\pmb{B} 可逆 \\ &\therefore \pmb{A} + \pmb{B} = \pmb{A}(\pmb{E}+\pmb{A}^{-1}\pmb{B}) = \pmb{A}(\pmb{B}^{-1}+\pmb{A}^{-1})\pmb{B}\\ &\because \pmb{A},(\pmb{B}^{-1}+\pmb{A}^{-1}),\pmb{B} 都可逆 \\ &\therefore (\pmb{A} + \pmb{B})^{-1} = \pmb{B}^{-1}(\pmb{B}^{-1}+\pmb{A}^{-1})^{-1}\pmb{A}^{-1} \end{aligned} AAA,BBBAAA+BBB=AAA(EEE+AAA1BBB)=AAA(BBB1+AAA1)BBBAAA,(BBB1+AAA1),BBB(AAA+BBB)1=BBB1(BBB1+AAA1)1AAA1

2. 伴随矩阵

2.1 伴随矩阵的定义

  • 定义:将行列式 ∣ A ∣ |\pmb{A}| AAA n 2 n^2 n2 个元素的代数余子式按照如下形式(就是第 i i i 行元素的代数余子式写在第 i i i 列)排列成的矩阵称为 A \pmb{A} AAA伴随矩阵,记作 A ∗ \pmb{A}^* AAA,即
    A ∗ = [ A 11 A 21 … A n 1 A 12 A 22 … A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n … A n n ] − 1 \pmb{A}^* = \begin{bmatrix} &A_{11} &A_{21} &\dots &A_{n1}\\ &A_{12} &A_{22} &\dots &A_{n2}\\ &\vdots &\vdots & &\vdots\\ &A_{1n} &A_{2n} &\dots &A_{nn}\\ \end{bmatrix}^{-1} AAA=A11A12A1nA21A22A2nAn1An2Ann1

2.2 伴随矩阵的定义与重要公式

  1. 对任意 n 阶方阵 A \pmb{A} AAA,都有伴随矩阵 A ∗ \pmb{A}^* AAA,且有公式

    公式证明
    A A ∗ = A ∗ A = ∣ A ∣ E \pmb{A}\pmb{A}^* = \pmb{A}^*\pmb{A} = \vert\pmb{A}\vert\pmb{E} AAAAAA=AAAAAA=AAAEEE可以用归纳法证明,给出一个2阶的例子,设 A = [ a 11 a 12 a 21 a 22 ] \pmb{A}=\begin{bmatrix}a_{11} &a_{12} \\ a_{21} &a_{22}\end{bmatrix} AAA=[a11a21a12a22] A ∗ = [ A 11 A 21 A 12 A 22 ] \pmb{A}^*=\begin{bmatrix}A_{11} &A_{21} \\ A_{12} &A_{22}\end{bmatrix} AAA=[A11A12A21A22],则有 A A ∗ = [ a 11 A 11 + a 12 A 12 a 11 A 21 + a 12 A 22 a 21 A 11 + a 22 A 12 a 21 A 21 + a 22 A 22 ] = [ ∣ A ∣ 0 0 ∣ A ∣ ] = ∣ A ∣ E \pmb{A}\pmb{A}^* = \begin{bmatrix}&a_{11}A_{11}+a_{12}A_{12} &a_{11}A_{21}+a_{12}A_{22}\\&a_{21}A_{11}+a_{22}A_{12} &a_{21}A_{21}+a_{22}A_{22}\end{bmatrix} = \begin{bmatrix}\vert\pmb{A}\vert &0\\0 &\vert\pmb{A}\vert\end{bmatrix} = \vert\pmb{A}\vert\pmb{E} AAAAAA=[a11A11+a12A12a21A11+a22A12a11A21+a12A22a21A21+a22A22]=[AAA00AAA]=AAAEEE
    ∣ A ∗ ∣ = ∣ A ∣ n − 1 \vert\pmb{A}^*\vert = \vert\pmb{A}\vert^{n-1} AAA=AAAn1 ∵ A ∗ A = ∣ A ∣ E ∴ ∣ A ∗ A ∣ = ∣ ∣ A ∣ E ∣ ∴ ∣ A ∗ ∣ ∣ A ∣ = ∣ A ∣ n ∴ ∣ A ∗ ∣ = ∣ A ∣ n − 1 \begin{aligned}&\because \pmb{A}^*\pmb{A} = \vert\pmb{A}\vert\pmb{E} \\&\therefore \vert\pmb{A}^*\pmb{A}\vert = \vert \vert\pmb{A}\vert\pmb{E} \vert \\&\therefore \vert\pmb{A}^*\vert\vert\pmb{A}\vert = \vert\pmb{A}\vert^n \\&\therefore \vert\pmb{A}^*\vert = \vert\pmb{A}\vert^{n-1}\end{aligned} AAAAAA=AAAEEEAAAAAA=AAAEEEAAAAAA=AAAnAAA=AAAn1
    ( A + B ) ∗ ≠ A ∗ + B ∗ (\pmb{A}+\pmb{B})^* \neq \pmb{A}^* + \pmb{B}^* (AAA+BBB)=AAA+BBB-
  2. 交换律
    { A E = E A A k E = k E A A A ∗ = A ∗ A A B = B A = E    ( 要 求 A − 1 = B ) \left\{ \begin{aligned} &\pmb{A}\pmb{E} = \pmb{E}\pmb{A}\\ &\pmb{A}k\pmb{E} = k\pmb{E}\pmb{A}\\ &\pmb{A}\pmb{A}^* = \pmb{A}^*\pmb{A} \\ &\pmb{A}\pmb{B} = \pmb{B}\pmb{A} = \pmb{E} \space\space(要求 \pmb{A}^{-1} = \pmb{B}) \end{aligned} \right. AAAEEE=EEEAAAAAAkEEE=kEEEAAAAAAAAA=AAAAAAAAABBB=BBBAAA=EEE  (AAA1=BBB)

2.3 用伴随矩阵求逆矩阵

  • 用伴随矩阵求逆矩阵,适用于求数值矩阵的逆矩阵
    1. ∣ A ∣ ≠ 0 |\pmb{A}| \neq 0 AAA=0,则 A \pmb{A} AAA 可逆,且
      { A − 1 = 1 ∣ A ∣ A ∗ A ∗ = ∣ A ∣ A − 1 \left\{ \begin{aligned} &\pmb{A}^{-1} = \frac{1}{|\pmb{A}|}\pmb{A}^*\\ &\pmb{A}^* = |\pmb{A}|\pmb{A}^{-1}\\ \end{aligned} \right. AAA1=AAA1AAAAAA=AAAAAA1
  • 例题:已知 A = [ a b c d ] \pmb{A} = \begin{bmatrix}a &b \\c &d\end{bmatrix} AAA=[acbd],写出 A \pmb{A} AAA 可逆的一个充要条件,并求 A − 1 \pmb{A}^{-1} AAA1
    ∵ A 可 逆 ⇔ ∣ A ∣ ≠ 0 ∴ 充 要 条 件 : ∣ A ∣ = a d − b c ≠ 0 ∴ A − 1 = 1 ∣ A ∣ A ∗ = 1 a d − b c [ d − b − c a ] \begin{aligned} &\because \pmb{A}可逆 \Leftrightarrow |\pmb{A}| \neq 0 \\ &\therefore 充要条件:|\pmb{A}| = ad-bc \neq 0\\ &\therefore \pmb{A}^{-1} = \frac{1}{|\pmb{A}|}\pmb{A}^* = \frac{1}{ad-bc}\begin{bmatrix}d &-b \\-c &a\end{bmatrix} \end{aligned} AAAAAA=0AAA=adbc=0AAA1=AAA1AAA=adbc1[dcba]

3. 转置、伴随、逆矩阵、取行列式公式小结

  • 现有n阶方阵 A \pmb{A} AAA ,设以下公式中所需条件(比如要求 A ≠ 0 \pmb{A}\neq 0 AAA=0)均满足

3.1 嵌套

  • 相同操作嵌套小结
    公式证明
    ∣ ∣ A ∣ ∣ = ∣ A ∣ \vert\vert\pmb{A}\vert\vert = \vert\pmb{A}\vert AAA=AAA取一次行列式就变成一个数了,第二次操作失效
    ( A T ) T = A (\pmb{A}^T)^T = \pmb{A} (AAAT)T=AAA-
    ( A − 1 ) − 1 = A (\pmb{A}^{-1})^{-1} = \pmb{A} (AAA1)1=AAA-
    ( A ∗ ) ∗ = ∣ A ∣ n − 2 A (\pmb{A}^*)^* = \vert\pmb{A}\vert^{n-2}\pmb{A} (AAA)=AAAn2AAA ∵ A ∗ ( A ∗ ) ∗ = ∣ A ∗ ∣ E ∴ ( A ∗ ) − 1 A ∗ ( A ∗ ) ∗ = ( A ∗ ) − 1 ∣ A ∗ ∣ E ∴ ( A ∗ ) ∗ = ( A ∗ ) − 1 ∣ A ∣ n − 1 E ∵ ( A ∗ ) − 1 = ( ∣ A ∣ A − 1 ) − 1 = 1 ∣ A ∣ A ∴ ( A ∗ ) ∗ = 1 ∣ A ∣ A ∣ A ∣ n − 1 E = ∣ A ∣ n − 2 A \begin{aligned}&\because \pmb{A}^*(\pmb{A}^*)^* = \vert\pmb{A}^*\vert\pmb{E} \\&\therefore (\pmb{A}^*)^{-1}\pmb{A}^*(\pmb{A}^*)^* = (\pmb{A}^*)^{-1}\vert\pmb{A}^*\vert\pmb{E}\\&\therefore (\pmb{A}^*)^* = (\pmb{A}^*)^{-1}\vert\pmb{A}\vert^{n-1}\pmb{E} \\&\because (\pmb{A}^*)^{-1} = (\vert\pmb{A}\vert\pmb{A}^{-1})^{-1} = \frac{1}{\vert\pmb{A}\vert}\pmb{A}\\&\therefore (\pmb{A}^*)^* =\frac{1}{\vert\pmb{A}\vert}\pmb{A}\vert\pmb{A}\vert^{n-1}\pmb{E} = \vert\pmb{A}\vert^{n-2}\pmb{A} \\\end{aligned} AAA(AAA)=AAAEEE(AAA)1AAA(AAA)=(AAA)1AAAEEE(AAA)=(AAA)1AAAn1EEE(AAA)1=(AAAAAA1)1=AAA1AAA(AAA)=AAA1AAAAAAn1EEE=AAAn2AAA

3.2 数乘

  • k k k 为任意常数,有
    公式证明
    ∣ k A ∣ = k n ∣ A ∣ \vert k\pmb{A}\vert = k^n\vert\pmb{A}\vert kAAA=knAAA-
    ( k A ) T = k A T (k\pmb{A})^T = k\pmb{A}^T (kAAA)T=kAAAT-
    ( k A ) − 1 = 1 k A − 1 (k\pmb{A})^{-1} = \frac{1}{k}\pmb{A}^{-1} (kAAA)1=k1AAA1 ( k A ) 1 k A − 1 = E (k\pmb{A}) \frac{1}{k}\pmb{A}^{-1} =\pmb{E} (kAAA)k1AAA1=EEE
    ( k A ) ∗ = k n − 1 A ∗ (k\pmb{A})^* = k^{n-1}\pmb{A}^* (kAAA)=kn1AAA ∵ ( k A ) ( k A ) ∗ = ∣ k A ∣ E ∴ ( k A ) ∗ = ∣ k A ∣ ( k A ) − 1 = k n − 1 ∣ A ∣ A − 1 = k n − 1 A ∗ \begin{aligned}&\because (k\pmb{A})(k\pmb{A})^* =\vert k\pmb{A}\vert \pmb{E} \\&\therefore (k\pmb{A})^* = \vert k\pmb{A}\vert(k\pmb{A})^{-1} = k^{n-1}\vert\pmb{A}\vert\pmb{A}^{-1} = k^{n-1}\pmb{A}^*\end{aligned} (kAAA)(kAAA)=kAAAEEE(kAAA)=kAAA(kAAA)1=kn1AAAAAA1=kn1AAA

3.3 穿脱原则

  • 穿脱原则就是展开前后排列顺序相反
    公式证明
    ∣ A B ∣ = ∣ A ∣ ∣ B ∣ = ∣ B ∣ ∣ A ∣ \vert\pmb{A}\pmb{B}\vert = \vert\pmb{A}\vert\vert\pmb{B}\vert = \vert\pmb{B}\vert\vert\pmb{A}\vert AAABBB=AAABBB=BBBAAA-
    ( A B ) T = B T A T (\pmb{A}\pmb{B})^T = \pmb{B}^T\pmb{A}^T (AAABBB)T=BBBTAAAT-
    ( A B ) − 1 = B − 1 A − 1 (\pmb{A}\pmb{B})^{-1} = \pmb{B}^{-1}\pmb{A}^{-1} (AAABBB)1=BBB1AAA1-
    ( A B ) ∗ = B ∗ A ∗ (\pmb{A}\pmb{B})^* = \pmb{B}^*\pmb{A}^* (AAABBB)=BBBAAA ∵ ( A B ) ( A B ) ∗ = ∣ A B ∣ E ∴ ( A B ) ∗ = ∣ A B ∣ ( A B ) − 1 ∴ ( A B ) ∗ = ∣ A ∣ ∣ B ∣ B − 1 A − 1 ∴ ( A B ) ∗ = ( ∣ B ∣ B − 1 ) ( ∣ A ∣ A − 1 ) = B ∗ A ∗ \begin{aligned}&\because (\pmb{A}\pmb{B})(\pmb{A}\pmb{B})^* = \vert\pmb{A}\pmb{B}\vert \pmb{E} \\&\therefore (\pmb{A}\pmb{B})^* = \vert\pmb{A}\pmb{B}\vert(\pmb{A}\pmb{B})^{-1} \\&\therefore (\pmb{A}\pmb{B})^* = \vert\pmb{A}\vert\vert\pmb{B}\vert\pmb{B}^{-1}\pmb{A}^{-1} \\&\therefore (\pmb{A}\pmb{B})^* = (\vert\pmb{B}\vert\pmb{B}^{-1})(\vert\pmb{A}\vert\pmb{A}^{-1}) = \pmb{B}^*\pmb{A}^*\end{aligned} (AAABBB)(AAABBB)=AAABBBEEE(AAABBB)=AAABBB(AAABBB)1(AAABBB)=AAABBBBBB1AAA1(AAABBB)=(BBBBBB1)(AAAAAA1)=BBBAAA

3.4 交换操作顺序

  • 求逆、求转置、求伴随,任意两个可以交换执行顺序
    公式证明
    ( A − 1 ) T = ( A T ) − 1 (\pmb{A}^{-1})^T = (\pmb{A}^T)^{-1} (AAA1)T=(AAAT)1 ∵ A T ( A − 1 ) T = ( A − 1 A ) T = E T = E ∴ ( A T ) − 1 = ( A − 1 ) T \begin{aligned}&\because \pmb{A}^T(\pmb{A}^{-1})^T = (\pmb{A}^{-1}\pmb{A})^T = \pmb{E}^T = \pmb{E} \\&\therefore (\pmb{A}^T)^{-1} = (\pmb{A}^{-1})^T\end{aligned} AAAT(AAA1)T=(AAA1AAA)T=EEET=EEE(AAAT)1=(AAA1)T
    ( A − 1 ) ∗ = ( A ∗ ) − 1 (\pmb{A}^{-1})^* = (\pmb{A}^*)^{-1} (AAA1)=(AAA)1 ∵ ( A − 1 ) ( A − 1 ) ∗ = ∣ A − 1 ∣ E ∴ ( A − 1 ) ∗ = ∣ A − 1 ∣ A = ∣ A ∣ − 1 A = ( A ∗ ) − 1 \begin{aligned}&\because (\pmb{A}^{-1})(\pmb{A}^{-1})^* =\vert\pmb{A}^{-1}\vert\pmb{E} \\&\therefore (\pmb{A}^{-1})^* = \vert\pmb{A}^{-1}\vert\pmb{A} = \vert\pmb{A}\vert^{-1}\pmb{A} = (\pmb{A}^*)^{-1}\end{aligned} (AAA1)(AAA1)=AAA1EEE(AAA1)=AAA1AAA=AAA1AAA=(AAA)1
    ( A ∗ ) T = ( A T ) ∗ (\pmb{A}^*)^T = (\pmb{A}^T)^* (AAA)T=(AAAT) ∵ ( A T ) ( A T ) ∗ = ∣ A T ∣ E ∴ ( A T ) ∗ = ∣ A T ∣ ( A T ) − 1 = ∣ A ∣ ( A − 1 ) T = ∣ A ∣ ( 1 ∣ A ∣ A ∗ ) T = ( A ∗ ) T \begin{aligned}&\because (\pmb{A}^T)(\pmb{A}^T)^* =\vert\pmb{A}^T\vert\pmb{E} \\&\therefore (\pmb{A}^T)^* =\vert\pmb{A}^T\vert(\pmb{A}^T)^{-1} = \vert\pmb{A}\vert(\pmb{A}^{-1})^T = \vert\pmb{A}\vert( \frac{1}{\vert\pmb{A}\vert}\pmb{A}^*)^T =(\pmb{A}^*)^T\end{aligned} (AAAT)(AAAT)=AAATEEE(AAAT)=AAAT(AAAT)1=AAA(AAA1)T=AAA(AAA1AAA)T=(AAA)T

3.5 操作后取行列式

  • 在转置、求逆、求伴随后取行列式
    { ∣ A T ∣ = ∣ A ∣ ∣ A − 1 ∣ = ∣ A ∣ − 1 ∣ A ∗ ∣ = ∣ A ∣ n − 1 \left\{ \begin{aligned} &|\pmb{A}^T| = |\pmb{A}| \\ &|\pmb{A}^{-1}| = |\pmb{A}|^{-1} \\ &|\pmb{A}^*| = |\pmb{A}|^{n-1} \end{aligned} \right. AAAT=AAAAAA1=AAA1AAA=AAAn1

3.6 只有转置可以直接去括号

  • 取行列式、求逆、求伴随都不能直接去括号
    { ( A + B ) T = A T + B T ∣ A + B ∣ ≠ ∣ A ∣ + ∣ B ∣ ( A + B ) − 1 ≠ A − 1 + B − 1 ( A + B ) ∗ ≠ A ∗ + B ∗ \left\{ \begin{aligned} &(\pmb{A}+\pmb{B})^T = \pmb{A}^T + \pmb{B}^T \\ &|\pmb{A}+\pmb{B}| \neq |\pmb{A}| + |\pmb{B}| \\ &(\pmb{A}+\pmb{B})^{-1} \neq \pmb{A}^{-1} + \pmb{B}^{-1} \\ &(\pmb{A}+\pmb{B})^* \neq \pmb{A}^* + \pmb{B}^* \end{aligned} \right. (AAA+BBB)T=AAAT+BBBTAAA+BBB=AAA+BBB(AAA+BBB)1=AAA1+BBB1(AAA+BBB)=AAA+BBB

4. 初等变换与初等矩阵

4.1 初等变换

  • 矩阵和线性方程组、行列式有着相同的初等变换

    1. 倍乘:一个非零常数乘矩阵的某一行(列)
    2. 互换:互换矩阵中某两行(列)的位置
    3. 倍加:将矩阵的某一行(列)的 k k k 倍加到另一行(列)

    以上三种操作称为矩阵的初等行(列)变换

4.2 初等矩阵

  • 由单位矩阵经过一次初等变换得到的矩阵称为 初等矩阵,三种初等变换对应了三种初等矩阵
    1. 倍乘初等矩阵 E i ( k ) ( k ≠ 0 ) \pmb{E}_i(k)(k\neq0) EEEi(k)(k=0) 代表单位矩阵 E \pmb{E} EEE 的第 i i i 行(列)乘以某非零常数 k k k 得到的初等矩阵。以3阶矩阵为例:
      E 2 ( k ) = [ 1 0 0 0 k 0 0 0 1 ] \pmb{E}_2(k) = \begin{bmatrix} 1 &0 &0\\ 0 &k &0\\ 0 &0 &1\\ \end{bmatrix} EEE2(k)=1000k0001
    2. 互换初等矩阵 E i j \pmb{E}_{ij} EEEij 代表单位矩阵 E \pmb{E} EEE 的第 i i i 行(列)与第 j j j 行(列)互换所得的初等矩阵
      E 12 = [ 0 1 0 1 0 0 0 0 1 ] \pmb{E}_{12} = \begin{bmatrix} 0 &1 &0\\ 1 &0 &0\\ 0 &0 &1\\ \end{bmatrix} EEE12=010100001
    3. 倍加初等矩阵 E i j ( k ) \pmb{E}_{ij}(k) EEEij(k) 代表单位矩阵 E \pmb{E} EEE 的第 j j j 行的 k k k 倍加到第 i i i 行(或第 i i i 列的 k k k 倍加到第 j j j 列)所得的初等矩阵。
      E 31 ( k ) = [ 1 0 0 0 1 0 k 0 1 ] \pmb{E}_{31}(k) = \begin{bmatrix} 1 &0 &0\\ 0 &1 &0\\ k &0 &1\\ \end{bmatrix} EEE31(k)=10k010001

4.3 初等矩阵的性质与重要公式

  • 四条常用性质

    1. 初等矩阵的转置仍是初等矩阵
    2. 因为初等矩阵的行列式都不为零,故所有 初等矩阵都是可逆矩阵,且逆矩阵都是相同类型的初等矩阵
      { ∣ E i ( k ) ∣ = k ≠ 0 ∣ E i j ∣ = − 1 ≠ 0 ∣ E i j ( k ) ∣ = 1 ≠ 0          { [ E i ( k ) ] − 1 = E i ( 1 k ) [ E i j ] − 1 = E i j [ E i j ( k ) ] − 1 = E i j ( − k ) \left\{ \begin{aligned} &|\pmb{E}_i(k)| = k \neq 0 \\ &|\pmb{E}_{ij}| = -1 \neq 0 \\ &|\pmb{E}_{ij}(k)| = 1 \neq 0 \end{aligned} \right. \space\space\space\space\space\space\space\space \left\{ \begin{aligned} &[\pmb{E}_i(k)]^{-1} = \pmb{E_i}(\frac{1}{k}) \\ &[\pmb{E}_{ij}]^{-1} = \pmb{E}_{ij}\\ &[\pmb{E}_{ij}(k)]^{-1} = \pmb{E}_{ij}(-k) \end{aligned} \right. EEEi(k)=k=0EEEij=1=0EEEij(k)=1=0        [EEEi(k)]1=EiEiEi(k1)[EEEij]1=EEEij[EEEij(k)]1=EEEij(k)
    3. 可逆矩阵可以表示为有限个初等矩阵的乘积,设 A \pmb{A} AAA 是可逆矩阵,有
      A = P 1 P 2 . . . P s \pmb{A} = \pmb{P}_1\pmb{P}_2...\pmb{P}_s AAA=PPP1PPP2...PPPs 其中 P 1 , P 2 , . . . , P s \pmb{P}_1,\pmb{P}_2,...,\pmb{P}_s PPP1,PPP2,...,PPPs 是初等矩阵。
    4. 对矩阵进行初等行变换,相当于矩阵左乘相应的初等矩阵;对矩阵进行初等列变换,相当于矩阵右乘相应的初等矩阵。例如,设 A = [ 1 2 2 3 ] \pmb{A} = \begin{bmatrix}1 &2 \\2 &3\end{bmatrix} AAA=[1223],要想把 A \pmb{A} AAA 的第一行的-2倍加到第二行,就相当于 A \pmb{A} AAA 左乘 E 21 ( − 2 ) \pmb{E}_{21}(-2) EEE21(2)
      E 21 ( − 2 ) A = [ 1 0 − 2 1 ] [ 1 2 2 3 ] = [ 1 2 0 − 1 ] \pmb{E}_{21}(-2) \pmb{A} = \begin{bmatrix}1 &0 \\-2 &1\end{bmatrix} \begin{bmatrix}1 &2 \\2 &3\end{bmatrix} = \begin{bmatrix}1 &2 \\0 &-1\end{bmatrix} EEE21(2)AAA=[1201][1223]=[1021]
  • 重要推论:可逆矩阵一定可以经过有限次初等变换化为同阶单位矩阵。证明如下
    ∵ A 可 逆 ∴ A = P 1 P 2 . . . P s      ( P i 均 为 初 等 矩 阵 ) ∴ A P s − 1 . . . P 2 − 1 P 1 − 1 = P 1 P 2 . . . P s P s − 1 . . . P 2 − 1 P 1 − 1 = E ∵ 初 等 矩 阵 的 逆 矩 阵 也 是 初 等 矩 阵 ∴ P i − 1 均 为 初 等 矩 阵 ∵ 矩 阵 和 初 等 矩 阵 相 乘 相 当 于 进 行 初 等 行 ( 列 ) 变 换 ∴ 可 逆 矩 阵 一 定 可 以 经 过 有 限 次 初 等 变 换 化 为 同 阶 初 等 矩 阵 得 证 \begin{aligned} &\because \pmb{A} 可逆\\ &\therefore \pmb{A} = \pmb{P}_1\pmb{P}_2...\pmb{P}_s\space\space\space\space(P_i均为初等矩阵) \\ &\therefore \pmb{A}\pmb{P}_s^{-1}...\pmb{P}_2^{-1}\pmb{P}_1^{-1} = \pmb{P}_1\pmb{P}_2...\pmb{P}_s\pmb{P}_s^{-1}...\pmb{P}_2^{-1}\pmb{P}_1^{-1} = \pmb{E} \\ &\because 初等矩阵的逆矩阵也是初等矩阵 \\ &\therefore P_i^{-1}均为初等矩阵 \\ &\because 矩阵和初等矩阵相乘相当于进行初等行(列)变换 \\ &\therefore 可逆矩阵一定可以经过有限次初等变换化为同阶初等矩阵得证 \end{aligned} AAAAAA=PPP1PPP2...PPPs    (Pi)AAAPPPs1...PPP21PPP11=PPP1PPP2...PPPsPPPs1...PPP21PPP11=EEEPi1
    欲对任意可逆矩阵 A \pmb{A} AAA进行初等矩阵分解,可以反向操作,先通过初等变换将其转为 E \pmb{E} EEE,即找出 A P s − 1 . . . P 2 − 1 P 1 − 1 = E \pmb{A}\pmb{P}_s^{-1}...\pmb{P}_2^{-1}\pmb{P}_1^{-1} =\pmb{E} AAAPPPs1...PPP21PPP11=EEE,再得到分解结果 A = P 1 P 2 . . . P s \pmb{A} = \pmb{P}_1\pmb{P}_2...\pmb{P}_s AAA=PPP1PPP2...PPPs

  • 例题:现有矩阵 A = [ 1 0 1 − 1 − 1 1 0 2 − 4 ] \pmb{A} = \begin{bmatrix}1 &0 &1\\-1 &-1 &1\\0 &2 &-4\\\end{bmatrix} AAA=110012114 B = [ 1 0 1 0 − 1 2 0 0 0 ] \pmb{B} = \begin{bmatrix}1 &0 &1\\0 &-1 &2\\0 &0 &0\\\end{bmatrix} BBB=100010120,求一个可逆矩阵 P \pmb{P} PPP 使得 P A = B \pmb{P}\pmb{A} = \pmb{B} PPPAAA=BBB

    显然,有 ∣ A ∣ = 0 |\pmb{A}| = 0 AAA=0 ∣ B ∣ = 0 |\pmb{B}| = 0 BBB=0,因此 A \pmb{A} AAA 不可逆,无法通过常规方法 P = B A − 1 \pmb{P} = \pmb{B}\pmb{A}^{-1} PPP=BBBAAA1 求解。这时,只能回归本质,从初等变换的角度考虑.观察两个矩阵,发现可以通过两步变换把 A \pmb{A} AAA 变成 B \pmb{B} BBB:(1)第一行加到第二行;(2)第二行的两倍加到第三行。即
    E 32 ( 2 ) E 21 ( 1 ) A = B P = E 32 ( 2 ) E 21 ( 1 ) = [ 1 0 0 1 1 0 2 2 1 ] \begin{aligned} &\pmb{E}_{32}(2)\pmb{E}_{21}(1)\pmb{A} = \pmb{B} \\ &\pmb{P} = \pmb{E}_{32}(2)\pmb{E}_{21}(1) = \begin{bmatrix}1 &0 &0\\1 &1 &0\\2 &2 &1\\\end{bmatrix} \end{aligned} EEE32(2)EEE21(1)AAA=BBBPPP=EEE32(2)EEE21(1)=112012001

4.4 用初等变换求逆矩阵

  • 根据4.3节中重要推论,可逆矩阵一定可以经过有限次初等行变换化为同阶单位矩阵,对于可逆矩阵 A \pmb{A} AAA,有有限个初等矩阵,使得
    P s . . . P 2 P 1 A = E P s . . . P 2 P 1 A A − 1 = E A − 1 P s . . . P 2 P 1 E = A − 1 \begin{aligned} &\pmb{P}_s...\pmb{P}_2\pmb{P}_1\pmb{A} = \pmb{E} \\ &\pmb{P}_s...\pmb{P}_2\pmb{P}_1\pmb{A}\pmb{A}^{-1} = \pmb{E}\pmb{A}^{-1} \\ &\pmb{P}_s...\pmb{P}_2\pmb{P}_1\pmb{E} = \pmb{A}^{-1} \\ \end{aligned} PPPs...PPP2PPP1AAA=EEEPPPs...PPP2PPP1AAAAAA1=EEEAAA1PPPs...PPP2PPP1EEE=AAA1
    如果把 P s . . . P 2 P 1 \pmb{P}_s...\pmb{P}_2\pmb{P}_1 PPPs...PPP2PPP1 看成一个整体,可以发现,对 A \pmb{A} AAA 执行这一系列行变换,可以得到 E \pmb{E} EEE;对 E \pmb{E} EEE 执行同一系列行变换,可以得到 A − 1 \pmb{A}^{-1} AAA1,这启发我们可以使用以下方法求逆矩阵
    在这里插入图片描述
  • 这种方法适用于求具体矩阵的逆,示例如下
    在这里插入图片描述

4.5 等价矩阵和矩阵的等价标准型

  • 等价矩阵:设 A , B \pmb{A},\pmb{B} AAA,BBB 都是 m × n m\times n m×n 维矩阵,若存在可逆矩阵 P m × m , Q n × n \pmb{P}_{m\times m},\pmb{Q}_{n\times n} PPPm×m,QQQn×n 使得 P A Q = B \pmb{PAQ}=\pmb{B} PAQPAQPAQ=BBB,则称 A , B \pmb{A},\pmb{B} AAA,BBB 是等价矩阵,记作 A ≅ B \pmb{A}\cong \pmb{B} AAABBB
  • 矩阵等价标准型 A \pmb{A} AAA 是一个 m × n m\times n m×n 矩阵,则 A \pmb{A} AAA 等价于形如 [ E r 0 0 0 ] \begin{bmatrix}\pmb{E}_r &\pmb{0} \\\pmb{0} &\pmb{0}\end{bmatrix} [EEEr000000000] 的矩阵(其中 E r \pmb{E}_r EEEr 是尺寸为 rank ( A ) \text{rank}(\pmb{A}) rank(AAA) 的单位矩阵),称为 A \pmb{A} AAA 的等价标准型。等价标准型是唯一的,即若 rank ( A ) = r \text{rank}(\pmb{A}) = r rank(AAA)=r,存在可逆矩阵 P , Q \pmb{P},\pmb{Q} PPP,QQQ 使得
    P A Q = [ E r 0 0 0 ] \pmb{PAQ}=\begin{bmatrix}\pmb{E}_r &\pmb{0} \\\pmb{0} &\pmb{0}\end{bmatrix} PAQPAQPAQ=[EEEr000000000] 注意到这本质上就是混合进行初等行列表换,以将原始矩阵 A \pmb{A} AAA 化为规定形式。一种普适的化法如下
    1. 做初等行变换,化阶梯型
    2. 做初等列变换,将每一非零行的除了首非零元外的其余元素化为零
    3. 适当地交换各列的位置使其左上角称为一个单位阵

5. 矩阵求逆总结

5.1 普通矩阵求逆

  • 前文已经讨论了四种对于普通可逆矩阵求逆的方法
    在这里插入图片描述

5.2 分块矩阵求逆

  • 考研要求中,分块矩阵求逆必有一块为全零,
    在这里插入图片描述
    根据全零块位置不同,一共有四种情况,可以直接记住结论

  • 当全零块不止一块时,也可以直接套公式,会更简化,例如
    在这里插入图片描述

  • 一般考虑分块主对角阵和副对角阵,有
    A = [ A 1 ⋱ A s ] ⇒ A − 1 = [ A 1 − 1 ⋱ A s − 1 ] \pmb{A} = \begin{bmatrix} \pmb{A}_1&& \\ &\ddots &\\ & & \pmb{A}_s\\ \end{bmatrix} \Rightarrow \pmb{A}^{-1} = \begin{bmatrix} \pmb{A}_1^{-1}&& \\ &\ddots &\\ & & \pmb{A}_s^{-1}\\ \end{bmatrix} AAA=AAA1AAAsAAA1=AAA11AAAs1
    A = [ A 1 … A s ] ⇒ A − 1 = [ A s − 1 … A 1 − 1 ] \pmb{A} = \begin{bmatrix} && \pmb{A}_1\\ &\dots &\\ \pmb{A}_s& & \\ \end{bmatrix} \Rightarrow \pmb{A}^{-1} = \begin{bmatrix} && \pmb{A}_s^{-1}\\ &\dots &\\ \pmb{A}_1^{-1} & & \\ \end{bmatrix} AAA=AAAsAAA1AAA1=AAA11AAAs1
    注意副对角线要反着写(这里副对角线的省略符号katex不支持,所以用水平的代替了)

6. 矩阵方程

  • 灵活使用矩阵的基本运算和矩阵求逆,就可以解矩阵方程了
    在这里插入图片描述

  • 在这里插入图片描述
    注:这里最后一步操作用到了 ( A − 1 − E ) (\pmb{A}^{-1}-\pmb{E}) (AAA1EEE) 可逆,这个其实不用证,把等号右边的6除过来,发现这里是两个矩阵相乘等于单位阵,直接用定义可二者互为逆矩阵

  • 在这里插入图片描述
    注意这里圈1处凑逆矩阵的操作,和圈2处对伴随矩阵、逆矩阵、行列式公式的灵活运用
  • 9
    点赞
  • 60
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云端FFF

所有博文免费阅读,求打赏鼓励~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值