均值
描述:一组数据的平均值。
中位数
描述:中位数就是将数据按大小顺序排列后,处于中间位置的数。
如果数据总个数为奇数,中位数就是中间位置的数。
如果数据总个数为偶数,中位数就是中间两个数据的平均值。
众数
描述:数据中出现次数最多的数。
一组数据中,可能存在多个众数,也可能不存在众数。
如:2、6、6、8、8 、10,众数是 6 和 8。
如:1、3、5、7、9、11,没有众数。
均值、中位数、众数的优缺点
优点 | 缺点 | |
均值 | 充分利用所有数据,适用性强 | 容易受到极端值影响 |
中位数 | 不受极端值影响 | 缺乏敏感性 |
众数 | 当数据具有明显的集中趋势时,代表性好;不受极端值影响 | 缺乏唯一性:可能有一个,可能有两个,可能一个都没有 |
例子
1)全国的家庭年总收入的平均值是10万元。
这时看不出来整体的贫富差距的,可能是少数人收入极高,大部分人收入极低,也可能是大部分人在平均值左右(10万)。
所以平均值容易受到异常值的影响,看不出数据的具体分布情况。
2)如果知道了平均值是10万元,并且也知道了中位数,就可以判断数据的分布情况了。
如果中位数在10万左右,也就是大部分人的收入在平均值附近,那么可以判断整体的贫富差距较小。
如果中位数远小于10万,假设是2万,也就是大部分人的收入都远低于平均值,这时贫富差距较大,穷人很多,富人极少。
如果中位数远大于10万,假设是30万,也就是大部分的收入都远大于平均值,这时贫富差距也较小,大部分人都达到了中产阶级,只有少数穷人,这或许就是小康社会吧。
3)最后,也可以把众数也加进来,众数一般作为辅助指标。