标准kalman过程

Kalman原理是通过上一时刻的估计值,结合运动模型,预测出当前时刻的值(当前时刻的预测值),再与测量值进行联合高斯分布,最终得到估计值。再以当前时刻的估计值为基础,结合运动模型,对下一时刻进行预测....如此往复迭代下去的算法。

 

公式来自于:https://blog.csdn.net/u010720661/article/details/63253509

左上角图来自于:https://blog.csdn.net/AdamShan/article/details/78248421

注意的地方:kalman是将预测经过尺度变换H后,再与测量值进行加权。

根据 大名鼎鼎的跟踪算法Sort源码[https://github.com/abewley/sort]采用的kalman库【...\Lib\site-packages\filterpy\kalman\kalman_filter.py】中,kalman计算过程如下:

# = = = 整个计算可以浓缩为 = = = = = = 
    输入测量值z
    输入上次最优值x,若初始,则保存z到x中
    x = Fx + Bu
    P = F*P*F' + Q
# 有测量值z时:
    y=z-H*x
    S = H*P*H' + R
    K = P*H'*inv(S)
   x = x + Ky
   P = (I-KH)P(I-KH)' + KRK'
# 无测量值z时:
   x=x
   P=P 
# = = = 备注 = = = = = = = = = = = = 
# 更新P时,P = (I-KH)P(I-KH)' + KRK'比P = (I-KH)P更稳定
# 转移矩阵 H*x  <->  z

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值