PyTorch深度学习系列课程介绍

❗本笔记转自《学习 PyTorch 进行深度学习:从零到精通书籍》:(Learn PyTorch for Deep Learning: Zero to Mastery book),我对原文进行了翻译和编辑,本系列课程介绍和目录在《使用PyTorch进行深度学习系列》课程介绍

pytorch deep learning by zero to mastery cover photo with different sections of the course

目录

文章简介
01-PyTorch基础知识本章将介绍本章将介绍在PyTorch中,机器学习和深度学习的基本构建模块——张量(tensor)。
02-快速入门:使用PyTorch进行机器学习和深度学习的基本工作流程通过训练和使用线性回归模型来介绍标准 PyTorch 工作流程。
03-使用PyTorch处理最简单的神经网络分类任务使用 PyTorch 解决几个不同的分类问题。
04-一文看懂什么是卷积神经网络?介绍卷积神经网络的相关知识,并利用卷积网络来处理和分类图像。
05-PyTorch自定义数据集Datasets、Loader和tranform使用 torchvision.datasets 以及我们自己的自定义 Dataset 类来加载食物图像,然后我们将构建一个 PyTorch 计算机视觉模型,对三种食物进行分类。
06-PyTorch迁移学习:在预训练模型上进行训练使用PyTorch利用预训练模型来进行训练。
07-从头开始创建一个 Vision Transformer (ViT)PyTorch是机器学习研究中最受欢迎的深度学习框架,让我们通过复制机器学习论文来了解原因。

其他资源:

课程介绍

本教程适用于 PyTorch 2.0。

从 PyTorch 和机器学习的准系统基础知识开始,因此即使您是机器学习新手,您也会跟上进度。然后我们将探索更高级的领域,包括 PyTorch 神经网络分类、PyTorch 工作流程、计算机视觉、自定义数据集、实验跟踪、模型部署,以及我个人最喜欢的:迁移学习,这是一种利用机器学习模型所学知识的强大技术另一个问题并将其应用到您自己的问题中!

需要具备什么条件?

  1. 3-6 个月编写 Python 代码和机器学习的经验。推荐课程:从零到精通数据科学和机器学习训练营机器学习初学者课程
  2. 会使用 Jupyter Notebooks 。

原课程相关链接:

感谢

感谢原作者 Daniel Bourke,访问https://www.learnpytorch.io/可以阅读英文原文,点击原作者的Github仓库:https://github.com/mrdbourke/pytorch-deep-learning/可以获得帮助和其他信息。

本文同样遵守遵守 MIT license,不受任何限制,包括但不限于:使用、复制、修改、合并、发布、分发、再许可和/或出售。但需标明原始作者的许可信息:renhai-lab:https://cdn.renhai-lab.tech/

如果你觉得本系列文章有用,欢迎关注博客,点赞和收藏,也欢迎在评论区讨论:

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Renhai实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值