求证:强度函数为
λ
(
t
)
(
λ
(
t
)
>
0
,
t
≥
0
)
\lambda (t)\ (\lambda (t)\gt 0, t\geq 0)
λ(t) (λ(t)>0,t≥0) 的非齐次 Poisson 过程
{
N
(
t
)
,
t
≥
0
}
\{N(t), t\geq 0\}
{N(t),t≥0} 的期望
E
[
N
(
t
)
]
E[N(t)]
E[N(t)] 与方差
D
[
N
(
t
)
]
D[N(t)]
D[N(t)] 相等,均为
m
(
t
)
=
∫
0
t
λ
(
s
)
d
s
m(t)=\int_0^t \lambda(s)ds
m(t)=∫0tλ(s)ds
证明:由非齐次 Poisson 过程的定义知:
P
{
N
(
t
+
s
)
−
N
(
s
)
=
n
}
=
e
−
m
(
t
)
[
m
(
t
)
]
n
n
!
\displaystyle P\{N(t+s)-N(s)=n\}=e^{-m(t)}\frac{[m(t)]^n}{n!}
P{N(t+s)−N(s)=n}=e−m(t)n![m(t)]n
其中,
n
=
0
,
1
,
⋯
,
m
(
t
)
=
∫
0
t
λ
(
s
)
d
s
n=0,1,\cdots,m(t)=\int_0^t \lambda(s)ds
n=0,1,⋯,m(t)=∫0tλ(s)ds
即在任一长度为
t
t
t 的时间区间中,事件发生的次数服从均值为
m
(
t
)
=
∫
0
t
λ
(
s
)
d
s
m(t)=\int_0^t \lambda(s)ds
m(t)=∫0tλ(s)ds 的 Poisson 分布。
当令时间起点
s
s
s 为
0
0
0 时,等式
P
{
N
(
t
+
s
)
−
N
(
s
)
=
n
}
=
e
−
m
(
t
)
[
m
(
t
)
]
n
n
!
\displaystyle P\{N(t+s)-N(s)=n\}=e^{-m(t)}\frac{[m(t)]^n}{n!}
P{N(t+s)−N(s)=n}=e−m(t)n![m(t)]n
变为 P { N ( t ) − N ( 0 ) = n } = e − m ( t ) [ m ( t ) ] n n ! \displaystyle P\{N(t)-N(0)=n\}=e^{-m(t)}\frac{[m(t)]^n}{n!} P{N(t)−N(0)=n}=e−m(t)n![m(t)]n
⟺
\iff
⟺
P
{
N
(
t
)
=
n
}
=
e
−
m
(
t
)
[
m
(
t
)
]
n
n
!
∵
N
(
0
)
=
0
\displaystyle P\{N(t)=n\}=e^{-m(t)}\frac{[m(t)]^n}{n!} \quad \because N(0)=0
P{N(t)=n}=e−m(t)n![m(t)]n∵N(0)=0
可见,其服从 Poisson 分布。
所以,此时可由 Poisson 分布的期望与方差相等的性质可得 Poisson 过程的期望
E
[
N
(
t
)
]
E[N(t)]
E[N(t)] 与方差
D
[
N
(
t
)
]
D[N(t)]
D[N(t)] 相等,即
E
[
N
(
t
)
]
=
D
[
N
(
t
)
]
=
m
(
t
)
=
∫
0
t
λ
(
s
)
d
s
E[N(t)]=D[N(t)]=m(t)=\int_0^t \lambda(s)ds
E[N(t)]=D[N(t)]=m(t)=∫0tλ(s)ds
例题:
设
{
N
(
t
)
,
t
≥
0
}
\{N(t), t\geq 0\}
{N(t),t≥0} 是强度函数为
λ
(
t
)
=
0.5
(
1
+
c
o
s
ω
t
)
,
ω
≠
0
\lambda (t)=0.5(1+cos\omega t),\omega \neq 0
λ(t)=0.5(1+cosωt),ω=0 的非齐次 Poisson 过程。求
E
[
N
(
t
)
]
E[N(t)]
E[N(t)] 和方差
D
[
N
(
t
)
]
D[N(t)]
D[N(t)]。
解:
m
(
t
)
=
∫
0
t
λ
(
s
)
d
s
=
∫
0
t
0.5
(
1
+
c
o
s
ω
s
)
d
s
=
0.5
(
t
+
s
i
n
ω
t
ω
)
,
ω
≠
0
\displaystyle m(t)=\int_0^t \lambda(s)ds =\int_0^t 0.5(1+cos\omega s)ds =0.5(t+\frac {sin\omega t}{\omega}),\omega\neq 0
m(t)=∫0tλ(s)ds=∫0t0.5(1+cosωs)ds=0.5(t+ωsinωt),ω=0
则
E
[
N
(
t
)
]
=
D
[
N
(
t
)
]
=
m
(
t
)
=
0.5
(
t
+
s
i
n
ω
t
ω
)
,
ω
≠
0
\displaystyle E[N(t)]=D[N(t)]=m(t)=0.5(t+\frac {sin\omega t}{\omega}),\omega\neq 0
E[N(t)]=D[N(t)]=m(t)=0.5(t+ωsinωt),ω=0
【本文的LaTeX代码】
求证:强度函数为 $\lambda (t)\ (\lambda (t)\gt 0, t\geq 0)$ 的非齐次 Poisson 过程 $\{N(t), t\geq 0\}$ 的期望 $E[N(t)]$ 与方差 $D[N(t)]$ 相等,均为 $m(t)=\int_0^t \lambda(s)ds$
证明:由非齐次 Poisson 过程的定义知:
$\displaystyle P\{N(t+s)-N(s)=n\}=e^{-m(t)}\frac{[m(t)]^n}{n!}$
其中,$n=0,1,\cdots,m(t)=\int_0^t \lambda(s)ds$
即在任一长度为 $t$ 的时间区间中,事件发生的次数服从均值为 $m(t)=\int_0^t \lambda(s)ds$ 的 Poisson 分布。
当令时间起点 $s$ 为 $0$ 时,等式 $\displaystyle P\{N(t+s)-N(s)=n\}=e^{-m(t)}\frac{[m(t)]^n}{n!}$
变为 $\displaystyle P\{N(t)-N(0)=n\}=e^{-m(t)}\frac{[m(t)]^n}{n!}$
$\iff$$\displaystyle P\{N(t)=n\}=e^{-m(t)}\frac{[m(t)]^n}{n!} \quad \because N(0)=0$
可见,其服从 Poisson 分布。
所以,此时可由 Poisson 分布的期望与方差相等的性质可得 Poisson 过程的期望 $E[N(t)]$ 与方差 $D[N(t)]$ 相等,即 <font color=red>$E[N(t)]=D[N(t)]=m(t)=\int_0^t \lambda(s)ds$ </font>
\
\
例题:
设 $\{N(t), t\geq 0\}$ 是强度函数为 $\lambda (t)=0.5(1+cos\omega t),\omega \neq 0$ 的非齐次 Poisson 过程。求 $E[N(t)]$ 和方差 $D[N(t)]$。
解:$\displaystyle m(t)=\int_0^t \lambda(s)ds
=\int_0^t 0.5(1+cos\omega s)ds
=0.5(t+\frac {sin\omega t}{\omega}),\omega\neq 0$
则 $\displaystyle E[N(t)]=D[N(t)]=m(t)=0.5(t+\frac {sin\omega t}{\omega}),\omega\neq 0$
\
\