泊松过程介绍

泊松过程

根据海上终端通信需求分布在时间和空间上的不均匀性, 可以用泊松过程模拟这一过程.

以下是泊松过程相关的理论知识.

1. 计数过程

如果随机过程N(t)代表系统(从某一开始时刻)到t时刻这段时间内发生某个事件的次数, 就称之为计数过程.

根据其定义,计数过程的性质有:

  1. N(t) >=0
  2. N(t)的值是整数
  3. 若s<t, 则N(s)<= N(t)
  4. 如果s<t, 则N(t)- N(s)代表在时间区间(s, t]内某个事件发生的次数

2. 独立增量过程

对于一个计数过程, 如果在不相交的时间区间内, 某个事件发生的次数是互相独立的, 则该计数过程就是一个独立增量过程.

用数学的方式可以表示如下:

{ X t } \{X_t\} {Xt}为一个离散随机过程, t = 1, 2, … .如果对于任意 t i ∈ T t_i \in T tiT, 且
t 1 < ⋯ < t n t_1 < \cdots <t_n t1<<tn
且n ≥ \geq 1,
均有
X t 2 − X t 1 , . . . , X t n − X t n − 1 X_{t_2}- X_{t_1}, ..., X_{t _n}- X_{t _{n-1}} Xt2Xt1,...,XtnXtn1
相互独立, 则称 { X t } \{X_t\} {Xt}为独立增量过程.

独立增量的意义就在于它的“无记忆性”, 也就是说, 当前时刻到下一时刻的增量, 和当前时刻的值并无关系, 也和之前的值毫无关系.

3. 平稳增量过程

对于一个计数过程, 如果在任意时间区间上的事件发生次数的分布, 只取决于该时间区间的长短, 则该计数过程称为平稳增量过程.

用数学的方式可以表示如下:

{ X t } \{X_t\} {Xt}为一个离散随机过程, t = 1, 2, … , 如果对于任意的时移 h h h, 任意 t , s ∈ T , 且 t + h , s + h ∈ T t, s \in T, 且t+h, s+h \in T t,sT,t+h,s+hT, 均有
X t − X s = d X t + h − X s + h X_t- X_s \mathop{=} \limits^d X_{t+h} - X_{s+h} XtXs=dXt+hXs+h
其中 = d \mathop{=} \limits^d =d代表同分布
则称 { X t } \{X_t\} {Xt}为平稳增量过程…

比如对于海上终端通信需求分布的情形, 由于不同时间段, 通信需求量是不均匀的, 有所谓的高峰时段(类比中午食堂人多), 因此是不满足平稳增量的, 不过没有关系, 我们可以用参数可变的泊松过程来模拟.

再举个例子, 比如N(t)代表到t时刻位为止, 地球上的新生儿数目, 假若对每个时刻t, 能生育的人类个体数量大体不变, 则N(t)可以视为一个平稳增量过程.

如果待定时间范围较短和相应的时间增量足够短的话, 许多离散时间随机过程还是可以近似成平稳增量过程的.

4. 泊松过程

定义: 计数过程N(t) 如果满足下列性质:

  1. N(0) = 0.
  2. 该过程是独立增量过程.
  3. 对于任意长度为h的时间区间, 事件发生次数服从均值为 λ t \lambda t λt的泊松分布.即对于任意s, t >=0, 有

P { N ( h + s ) − N ( s ) = n } = e − λ h ( λ h ) n n ! ,      n = 0 , 1 , . . . P\{N(h+s) - N(s) = n\} = e^{-\lambda h} \frac{(\lambda h)^n}{n!}, \ \ \ \ n = 0,1,... P{N(h+s)N(s)=n}=eλhn!(λh)n,    n=0,1,...

则该计数过程称为速率为 λ \lambda λ的泊松过程.

注意到, 根据性质3, 泊松过程是一个平稳增量过程, 因为在任意时间区间上的事件发生次数的分布, 只取决于该时间区间的长短h,

而且有
E [ N ( t ) ] = λ t E[N(t)] = \lambda t E[N(t)]=λt
这也就是为什么 λ \lambda λ被称为泊松过程的速率之原因.

5. 泊松过程的条件分布

假设到t时刻, 事件恰好发生了一次, 但我们不知道它何时发生. 所以, 退而求其次, 推导时间发生时刻的分布.

T 1 T_1 T1为事件发生的时刻, 则它在[0, s)内发生的概率(s<=t)为
P { T 1 < s ∣ N ( t ) = 1 } = P { T 1 < s , N ( t ) = 1 } P { N ( t ) = 1 } = P { [ 0 , s ) 发生了一次事件 , [ s , t ) 则没有发生事件 } P { N ( t ) = 1 } ↓  根据独立增量性质 , 不相交的时间区间上 , 事件发生次数的分布彼此独立 = P { [ 0 , s ) 发生了一次事件 } ⋅ P { [ s , t ) 则没有发生事件 } P { N ( t ) = 1 } = λ s e − λ s e − λ ( t − s ) λ t e − λ t = s t \begin{split} P\{T_1 <s|N(t) = 1\} &=\frac{P\{T_1 <s, N(t) = 1\}}{P\{N(t) = 1\}} \\ &=\frac{P\{[0,s)发生了一次事件, [s,t)则没有发生事件\}}{P\{N(t) = 1\}} \\ &\downarrow \ 根据独立增量性质, 不相交的时间区间上, 事件发生次数的分布彼此独立 \\ &=\frac{P\{[0,s)发生了一次事件\}\cdot P\{ [s,t)则没有发生事件\}}{P\{N(t) = 1\}} \\ &=\frac{\lambda s e^{-\lambda s} e^{-\lambda (t -s)}}{\lambda t e^{-\lambda t}} \\ &= \frac{s}{t} \end{split} P{T1<sN(t)=1}=P{N(t)=1}P{T1<s,N(t)=1}=P{N(t)=1}P{[0,s)发生了一次事件,[s,t)则没有发生事件} 根据独立增量性质,不相交的时间区间上,事件发生次数的分布彼此独立=P{N(t)=1}P{[0,s)发生了一次事件}P{[s,t)则没有发生事件}=λteλtλseλseλ(ts)=ts

推广这一结果, 则有以下定理:

定理5.2 给定N(t) = n, 则n个事件发生的时刻(到达时间) S 1 , . . . S n S_1,...S_n S1,...Sn的分布, 即为n个独立同分布的, 在(0, t)上的均匀分布的随机变量的顺序统计量的分布.

证明: 注意到, 在给定 N ( t ) = n N(t) = n N(t)=n条件下, 不妨设 0 < S 1 < ⋯ < S n < t 0 <S_1 < \cdots <S_n<t 0<S1<<Sn<t , 则这个event S 1 = s 1 , S 2 = s 2 , . . . , S n = s n S_1 = s_1, S_2 = s_2, ..., S_n = s_n S1=s1,S2=s2,...,Sn=sn发生, 求 S 1 , . . . S n S_1,...S_n S1,...Sn的条件概率密度等价于n+1个区间长度满足一下性质
T 1 = s 1 , T 2 = s 2 − s 1 , . . . , T n = s n − s n − 1 , T n + 1 > t − s n T_1 = s_1, T_2 = s_2 -s_1, ..., T_n = s_n-s_{n-1},T_{n+1} > t-s_n T1=s1,T2=s2s1,...,Tn=snsn1,Tn+1>tsn
则有
f ( s 1 , . . . s n ∣ N ( t ) = n ) = f ( s 1 , s 2 , . . . , s n , N ( t ) = n ) P { N ( t ) = n } = λ e − λ s 1 λ e − λ ( s 2 − s 1 ) . . . λ e − λ ( s n − s n − 1 ) λ e − λ ( t − s n ) e − λ t ( λ t ) n n ! = n ! t n \begin{split} f(s_1,...s_n|N(t) = n) &= \frac{f(s_1, s_2, ..., s_n, N(t)=n)}{P\{N(t) = n\}} \\ &=\frac{\lambda e^{- \lambda s_1}\lambda e^{- \lambda (s_2-s_1)}...\lambda e^{- \lambda (s_n - s_{n-1})}\lambda e^{- \lambda (t-s_n)}}{e^{-\lambda t}\frac{(\lambda t)^n}{n!}} \\ &=\frac{n!}{t^n} \end{split} f(s1,...snN(t)=n)=P{N(t)=n}f(s1,s2,...,sn,N(t)=n)=eλtn!(λt)nλeλs1λeλ(s2s1)...λeλ(snsn1)λeλ(tsn)=tnn!

6. 泊松过程的推广

6.1 非齐次泊松过程

齐次就是平稳的意思, 非齐次就是非平稳

定义: 如果计数过程N(t)满足以下性质:

  1. N(0) = 0.
  2. N(t) 是一个独立增量过程.
  3. P { N ( t + h ) − N ( t ) ≥ 2 } = o ( h ) P\{N(t+h)- N(t) \geq2\} = o(h) P{N(t+h)N(t)2}=o(h), 其中o(h)代表h的高阶无穷小.
  4. P { N ( t + h ) − N ( t ) = 1 } = λ ( t ) h + o ( h ) P\{N(t+h)- N(t) =1\} = \lambda(t)h+o(h) P{N(t+h)N(t)=1}=λ(t)h+o(h)

则称该计数过程为一个强度函数为 λ ( t ) \lambda(t) λ(t)的非齐次泊松过程.

注意到, 非齐次泊松过程可以通过对正常的泊松过程进行采样得到.

设N(t)为一个速率为 λ \lambda λ的泊松过程. 如果一个事件在t时刻发生, 则它被计数的概率为p(t). 设 N c ( t ) N_c(t) Nc(t)为从开始到t时刻被记录的事件数, 我们可以证明 N c ( t ) N_c(t) Nc(t)是一个强度函数为 λ ( t ) = λ p ( t ) \lambda(t) = \lambda p(t) λ(t)=λp(t)的非齐次泊松过程.

证明如下:

  1. N c ( 0 ) = 0 N_c(0) = 0 Nc(0)=0

  2. 由于对于任意时刻t和任意时间增量h, 在(t, t+h)时间段内计数的个数只取决于泊松过程 N ( t ) N(t) N(t)在该时间段内发生的次数和采样概率p(t), 和t时刻之前发生的情况均无关系, 因此满足独立增量过程的性质,.

  3. P { N c ( t + h ) − N c ( t ) ≥ 2 } ≤ P { N ( t + h ) − N ( t ) ≥ 2 } = o ( h ) P\{N_c(t+h)- N_c(t) \geq2\} \leq P\{N(t+h) -N(t) \geq2\} = o(h) P{Nc(t+h)Nc(t)2}P{N(t+h)N(t)2}=o(h)

  4. P { N c ( t + h ) − N c ( t ) = 1 } = P { N c ( t + h ) − N c ( t ) = 1 ∣ N ( t + h ) − N ( t ) = 1 } ⋅ P { N ( t + h ) − N ( t ) = 1 }        + P { N c ( t + h ) − N c ( t ) = 1 ∣ N ( t + h ) − N ( t ) ≥ 2 } ⋅ P { N ( t + h ) − N ( t ) ≥ 2 } = P { N c ( t + h ) − N c ( t ) = 1 ∣ N ( t + h ) − N ( t ) = 1 } ⋅ ( e − λ h ⋅ λ h ) + o ( h ) = P { N c ( t + h ) − N c ( t ) = 1 ∣ N ( t + h ) − N ( t ) = 1 } ⋅ λ h + o ( h ) = p ( t ) λ h + o ( h ) \begin{split} P\{N_c(t+h)- N_c(t) =1\} &=P\{N_c(t+h)- N_c(t) =1|N(t+h)- N(t)=1\} \cdot P\{N(t+h)-N(t) = 1\} \\ &\ \ \ \ \ \ +P\{N_c(t+h)- N_c(t) =1|N(t+h)- N(t)\geq 2\} \cdot P\{N(t+h)-N(t) \geq 2\} \\ &= P\{N_c(t+h)- N_c(t) =1|N(t+h)- N(t)=1\} \cdot(e^{-\lambda h}\cdot \lambda h) + o(h) \\ &= P\{N_c(t+h)- N_c(t) =1|N(t+h)- N(t)=1\} \cdot\lambda h + o(h) \\ &=p(t) \lambda h+o(h) \end{split} P{Nc(t+h)Nc(t)=1}=P{Nc(t+h)Nc(t)=1∣N(t+h)N(t)=1}P{N(t+h)N(t)=1}      +P{Nc(t+h)Nc(t)=1∣N(t+h)N(t)2}P{N(t+h)N(t)2}=P{Nc(t+h)Nc(t)=1∣N(t+h)N(t)=1}(eλhλh)+o(h)=P{Nc(t+h)Nc(t)=1∣N(t+h)N(t)=1}λh+o(h)=p(t)λh+o(h)

这个重要结论可以推而广之, 通过对一个泊松过程采样可以生成一个非齐次泊松过程, 同样, 任意一个带有有界强度函数的泊松过程均可视为某个泊松过程的采样结果.

6.2 复合泊松过程

定义 如果一个随机过程X(t)可以被表示为
X ( t ) = ∑ i = 1 N ( t ) Y i ,     t ≥ 0 X(t) = \sum_{i=1}^{N(t)} Y_i, \ \ \ t \geq 0 X(t)=i=1N(t)Yi,   t0
其中 N ( t ) N(t) N(t)为一个泊松过程, { Y i , i ≥ 1 } \{Y_i, i \geq 1\} {Yi,i1}为一组独立同分布, 且和泊松过程N(t)互相独立的随机变量, 则称X(t)为一个复合泊松过程, 对于每个特定的t, X(t) 是一个复合泊松随机变量.

例子

  1. 如果 Y i ≡ 1 Y_i \equiv 1 Yi1, 则 X ( t ) = N ( t ) X(t) = N(t) X(t)=N(t)
  2. 假设奥运会开幕, 从0时刻开始到t时刻, 到达场馆的大巴数量N(t)为一个泊松过程, 每辆大巴上的人数 Y i Y_i Yi独立同分布. 设X(t)为到t时刻为止进场的人数, 则X(t)是一个复合泊松过程.
  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值