【题目来源】
https://www.acwing.com/problem/content/description/1645/
【问题描述】
“旅行商问题”是这样一个问题:“给出一个城市列表以及每对城市之间的距离,访问每个城市并返回原城市的最短路线是什么?”。
这是组合优化中的一个 NP 难题,在运筹学和理论计算机科学中十分重要。
【输入格式】
第一行包含两个整数 N 和 M,分别表示城市数量以及 无向图 中边的数量。
接下来 M 行,每行以 City1 City2 Dist
格式描述一条边,其中城市编号从 1 到 N,Dist
为正且不超过 100。
再一行包含一个整数 K,表示给定路径的数量。
接下来 K 行描述路径,格式为:n C1 C2 … Cn
n 表示给定路径经过的城市的数目,Ci 是路径中经过的城市的编号。
【输出格式】
对于每个路径,在一行中输出 Path X: TotalDist (Description)
。
其中 X
是路径编号(从 1 开始),TotalDist
表示路径总距离(如果距离不存在,则输出 NA
),Description
是下列中的一项:• TS simple cycle
,如果这是一个访问每个城市的简单回路。• TS cycle
,如果这是一个访问每个城市的回路,但不是简单回路。• Not a TS cycle
,如果这不是一个访问了每个城市的回路。
最后一行,输出 Shortest Dist(X) = TotalDist
,X
是最接近旅行商问题解决方案的回路编号,TotalDist
是其总距离。
保证有唯一解。
【数据范围】
2<N≤200,
N−1≤M≤N(N−1)/2,
1≤K≤1000,
1≤n≤300
【输入样例】
6 10
6 2 1
3 4 1
1 5 1
2 5 1
3 1 8
4 1 6
1 6 1
6 3 1
1 2 1
4 5 1
7
7 5 1 4 3 6 2 5
7 6 1 3 4 5 2 6
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 2 5 4 3 1
7 6 3 2 5 4 1 6
【输出样例】
Path 1: 11 (TS simple cycle)
Path 2: 13 (TS simple cycle)
Path 3: 10 (Not a TS cycle)
Path 4: 8 (TS cycle)
Path 5: 3 (Not a TS cycle)
Path 6: 13 (Not a TS cycle)
Path 7: NA (Not a TS cycle)
Shortest Dist(4) = 8
【算法代码】
代码来源于:https://www.acwing.com/solution/content/96010/
#include <bits/stdc++.h>
using namespace std;
const int N=210,INF= 0x3f3f3f3f;
int n,m;
int ver[N];
int dist[N][N];
bool st[N];
int main() {
cin>>n>>m;
memset(dist,0x3f,sizeof dist);
for(int i=0; i<m; i++) {
int a,b,c;
cin>>a>>b>>c;
dist[a][b]= dist[b][a]=c;
}
int k;
cin>>k;
int min_dist=INF,min_id;
for(int T=1; T<=k; T++) {
int cnt;
cin>>cnt;
for(int i=0; i<cnt; i++) cin>>ver[i];
int sum = 0;
bool success=true;
memset(st,0,sizeof(st));
for(int i=0; i+1<cnt; i++) {
int idx=ver[i],idx1=ver[i+1];
if(dist[idx][idx1]==INF) {
sum=-1;
success=false;
break;
}
sum+=dist[idx][idx1];
st[idx]=true;
}
for(int i=1; i<=n; i++)
if(!st[i]) {
success=false;
break;
}
if(ver[0]!=ver[cnt-1]) success=false;
if(sum==-1)cout<<"Path "<<T<<": NA (Not a TS cycle)"<<endl;
else {
if(!success)cout<<"Path "<<T<<": "<<sum<<" (Not a TS cycle)"<<endl;
else {
if(cnt==n+1)cout<<"Path "<<T<<": "<<sum<<" (TS simple cycle)"<<endl;
else cout<<"Path "<<T<<": "<<sum<<" (TS cycle)"<<endl;
if(sum<min_dist)min_dist=sum,min_id=T;
}
}
}
cout<<"Shortest Dist("<<min_id<<") = "<<min_dist<<endl;
return 0;
}
/*
in:
6 10
6 2 1
3 4 1
1 5 1
2 5 1
3 1 8
4 1 6
1 6 1
6 3 1
1 2 1
4 5 1
7
7 5 1 4 3 6 2 5
7 6 1 3 4 5 2 6
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 2 5 4 3 1
7 6 3 2 5 4 1 6
out:
Path 1: 11 (TS simple cycle)
Path 2: 13 (TS simple cycle)
Path 3: 10 (Not a TS cycle)
Path 4: 8 (TS cycle)
Path 5: 3 (Not a TS cycle)
Path 6: 13 (Not a TS cycle)
Path 7: NA (Not a TS cycle)
Shortest Dist(4) = 8
*/