B - 畅通工程--并查集

本文介绍了一种基于并查集的最小生成树算法,用于解决某省城镇道路建设问题,确保任意两个城镇间都能实现交通,同时计算出最少还需建设的道路数目。通过使用并查集数据结构,算法能够高效地找出所有城镇的连通组件,并计算出达到完全连通所需的额外道路数量。
摘要由CSDN通过智能技术生成

某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路? 

Input

测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。 
注意:两个城市之间可以有多条道路相通,也就是说 
3 3 
1 2 
1 2 
2 1 
这种输入也是合法的 
当N为0时,输入结束,该用例不被处理。 

Output

对每个测试用例,在1行里输出最少还需要建设的道路数目。 

Sample Input

4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0

Sample Output

1
0
2
998


        
  
Huge input, scanf is recommended.

Hint

Hint
1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#include<stdio.h>

int par[1010];

void init(int n)
{
	for(int i=1;i<=n;i++){
		par[i]=i;
	}
}
int find(int x)
{
	if(par[x]==x)return x;
	else par[x]=find(par[x]);
}
void unite(int x,int y)
{
	x=find(x);y=find(y);
	if(x!=y)par[x]=y;
}
int main()
{
	int n,m,i,a,b;
	while(~scanf("%d",&n)){
		if(n==0)break;
		init(n);
		scanf("%d",&m);
		while(m--){
			scanf("%d%d",&a,&b);
			unite(a,b);
		}
		int sum=0;
		for(i=1;i<=n;i++)
		 if(i==par[i])sum++;
		printf("%d\n",sum-1);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值