某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2 1 3 4 3 3 3 1 2 1 3 2 3 5 2 1 2 3 5 999 0 0
Sample Output
1 0 2 998 Huge input, scanf is recommended.
Hint
Hint
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | #include<stdio.h> int par[1010]; void init(int n) { for(int i=1;i<=n;i++){ par[i]=i; } } int find(int x) { if(par[x]==x)return x; else par[x]=find(par[x]); } void unite(int x,int y) { x=find(x);y=find(y); if(x!=y)par[x]=y; } int main() { int n,m,i,a,b; while(~scanf("%d",&n)){ if(n==0)break; init(n); scanf("%d",&m); while(m--){ scanf("%d%d",&a,&b); unite(a,b); } int sum=0; for(i=1;i<=n;i++) if(i==par[i])sum++; printf("%d\n",sum-1); } return 0; } |