神经网络反向传播算法推导

本文深入解析神经网络的反向传播算法,介绍了符号说明、损失函数定义,详细推导了输出层误差、非输出层误差、损失函数关于偏置和权值的偏导数4个基本方程,并探讨了梯度消失问题。同时,给出了反向传播算法的代码实现示例。
摘要由CSDN通过智能技术生成

反向传播是多数神经网络进行参数更新的基本方法,它的本质是巧妙利用了高数中的链式法则,下面对这一方法进行推导:

(1)符号说明

f:神经元的激活函数

\omega:神经网络的权重向量

b:神经网络的偏置向量

z:某层的输入向量

a:某层的输出向量

(2)损失函数

假设神经网络的损失函数为L,那么定义其损失函数为:

                                 L(\omega ,b)=\frac{1}{2}(y-a^{l})^{2}

其中,y为期望的输出值,a^{L}是神经网络的预测输出值。

方向传播算法是通过改变网络中的权重参数\omega和偏置b来改变损失函数的方法。

(3)4个基本方程推导

1. 输出层误差

首先定义第l层的第i个神经元的误差为:

                                         \delta _{i}^{l}=\frac{\partial L}{\partial z_{i}^{l}}

在这里可能很多人会觉得不能理解,具体可以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值