反向传播是多数神经网络进行参数更新的基本方法,它的本质是巧妙利用了高数中的链式法则,下面对这一方法进行推导:
(1)符号说明
:神经元的激活函数
:神经网络的权重向量
:神经网络的偏置向量
:某层的输入向量
:某层的输出向量
(2)损失函数
假设神经网络的损失函数为,那么定义其损失函数为:
其中,为期望的输出值,是神经网络的预测输出值。
方向传播算法是通过改变网络中的权重参数和偏置来改变损失函数的方法。
(3)4个基本方程推导
1. 输出层误差
首先定义第层的第个神经元的误差为:
在这里可能很多人会觉得不能理解,具体可以