hdu 1002 A + B Problem II 万能大数模板再次成功应用

A + B Problem II

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 122283    Accepted Submission(s): 23433


Problem Description
I have a very simple problem for you. Given two integers A and B, your job is to calculate the Sum of A + B.
 

Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line consists of two positive integers, A and B. Notice that the integers are very large, that means you should not process them by using 32-bit integer. You may assume the length of each integer will not exceed 1000.
 

Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line is the an equation "A + B = Sum", Sum means the result of A + B. Note there are some spaces int the equation. Output a blank line between two test cases.
 

Sample Input
  
  
2 1 2 112233445566778899 998877665544332211
 

Sample Output
  
  
Case 1: 1 + 2 = 3 Case 2: 112233445566778899 + 998877665544332211 = 1111111111111111110
 
 
万能模板 很长很长 但是能实现很多很多功能     有些功能我们用不到 可以不进行调用 那么就不会影响我们写的程序的速度 
所以是值得推广的
 
 
#include <iostream>
#include <cstring>
#include<math.h>
using namespace std;

#define DIGIT	4      //四位隔开,即万进制
#define DEPTH	10000        //万进制
#define MAX     2000
typedef int bignum_t[MAX+1];

/************************************************************************/
/* 读取操作数,对操作数进行处理存储在数组里                             */
/************************************************************************/
int read(bignum_t a,istream&is=cin)
{
    char buf[MAX*DIGIT+1],ch ;
    int i,j ;
    memset((void*)a,0,sizeof(bignum_t));
    if(!(is>>buf))return 0 ;
    for(a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--)
		ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch ;
    for(a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0');
    for(i=1;i<=a[0];i++)
		for(a[i]=0,j=0;j<DIGIT;j++)
			a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0' ;
		for(;!a[a[0]]&&a[0]>1;a[0]--);
		return 1 ;
}

void write(const bignum_t a,ostream&os=cout)
{
    int i,j ;
    for(os<<a[i=a[0]],i--;i;i--)
		for(j=DEPTH/10;j;j/=10)
			os<<a[i]/j%10 ;
}

int comp(const bignum_t a,const bignum_t b)
{
    int i ;
    if(a[0]!=b[0])
		return a[0]-b[0];
    for(i=a[0];i;i--)
		if(a[i]!=b[i])
			return a[i]-b[i];
		return 0 ;
}

int comp(const bignum_t a,const int b)
{
    int c[12]=
    {
        1 
    }
    ;
    for(c[1]=b;c[c[0]]>=DEPTH;c[c[0]+1]=c[c[0]]/DEPTH,c[c[0]]%=DEPTH,c[0]++);
    return comp(a,c);
}

int comp(const bignum_t a,const int c,const int d,const bignum_t b)
{
    int i,t=0,O=-DEPTH*2 ;
    if(b[0]-a[0]<d&&c)
		return 1 ;
    for(i=b[0];i>d;i--)
    {
        t=t*DEPTH+a[i-d]*c-b[i];
        if(t>0)return 1 ;
        if(t<O)return 0 ;
    }
    for(i=d;i;i--)
    {
        t=t*DEPTH-b[i];
        if(t>0)return 1 ;
        if(t<O)return 0 ;
    }
    return t>0 ;
}
/************************************************************************/
/* 大数与大数相加                                                       */
/************************************************************************/
void add(bignum_t a,const bignum_t b)
{
    int i ;
    for(i=1;i<=b[0];i++)
		if((a[i]+=b[i])>=DEPTH)
			a[i]-=DEPTH,a[i+1]++;
		if(b[0]>=a[0])
			a[0]=b[0];
		else 
			for(;a[i]>=DEPTH&&i<a[0];a[i]-=DEPTH,i++,a[i]++);
			a[0]+=(a[a[0]+1]>0);
}
/************************************************************************/
/* 大数与小数相加                                                       */
/************************************************************************/
void add(bignum_t a,const int b)
{
    int i=1 ;
    for(a[1]+=b;a[i]>=DEPTH&&i<a[0];a[i+1]+=a[i]/DEPTH,a[i]%=DEPTH,i++);
    for(;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++);
}
/************************************************************************/
/* 大数相减(被减数>=减数)                                               */
/************************************************************************/
void sub(bignum_t a,const bignum_t b)
{
    int i ;
    for(i=1;i<=b[0];i++)
		if((a[i]-=b[i])<0)
			a[i+1]--,a[i]+=DEPTH ;
		for(;a[i]<0;a[i]+=DEPTH,i++,a[i]--);
		for(;!a[a[0]]&&a[0]>1;a[0]--);
}
/************************************************************************/
/* 大数减去小数(被减数>=减数)                                           */
/************************************************************************/
void sub(bignum_t a,const int b)
{
    int i=1 ;
    for(a[1]-=b;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++);
    for(;!a[a[0]]&&a[0]>1;a[0]--);
}

void sub(bignum_t a,const bignum_t b,const int c,const int d)
{
    int i,O=b[0]+d ;
    for(i=1+d;i<=O;i++)
		if((a[i]-=b[i-d]*c)<0)
			a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH ;
		for(;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++);
		for(;!a[a[0]]&&a[0]>1;a[0]--);
}
/************************************************************************/
/* 大数相乘,读入被乘数a,乘数b,结果保存在c[]                          */
/************************************************************************/
void mul(bignum_t c,const bignum_t a,const bignum_t b)
{
    int i,j ;
    memset((void*)c,0,sizeof(bignum_t));
    for(c[0]=a[0]+b[0]-1,i=1;i<=a[0];i++)
		for(j=1;j<=b[0];j++)
			if((c[i+j-1]+=a[i]*b[j])>=DEPTH)
				c[i+j]+=c[i+j-1]/DEPTH,c[i+j-1]%=DEPTH ;
			for(c[0]+=(c[c[0]+1]>0);!c[c[0]]&&c[0]>1;c[0]--);
}
/************************************************************************/
/* 大数乘以小数,读入被乘数a,乘数b,结果保存在被乘数                   */
/************************************************************************/
void mul(bignum_t a,const int b)
{
    int i ;
    for(a[1]*=b,i=2;i<=a[0];i++)
    {
        a[i]*=b ;
        if(a[i-1]>=DEPTH)
			a[i]+=a[i-1]/DEPTH,a[i-1]%=DEPTH ;
    }
    for(;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++);
    for(;!a[a[0]]&&a[0]>1;a[0]--);
}

void mul(bignum_t b,const bignum_t a,const int c,const int d)
{
    int i ;
    memset((void*)b,0,sizeof(bignum_t));
    for(b[0]=a[0]+d,i=d+1;i<=b[0];i++)
		if((b[i]+=a[i-d]*c)>=DEPTH)
			b[i+1]+=b[i]/DEPTH,b[i]%=DEPTH ;
		for(;b[b[0]+1];b[0]++,b[b[0]+1]=b[b[0]]/DEPTH,b[b[0]]%=DEPTH);
		for(;!b[b[0]]&&b[0]>1;b[0]--);
}
/**************************************************************************/
/* 大数相除,读入被除数a,除数b,结果保存在c[]数组                         */
/* 需要comp()函数                                                         */
/**************************************************************************/
void div(bignum_t c,bignum_t a,const bignum_t b)
{
    int h,l,m,i ;
    memset((void*)c,0,sizeof(bignum_t));
    c[0]=(b[0]<a[0]+1)?(a[0]-b[0]+2):1 ;
    for(i=c[0];i;sub(a,b,c[i]=m,i-1),i--)
		for(h=DEPTH-1,l=0,m=(h+l+1)>>1;h>l;m=(h+l+1)>>1)
			if(comp(b,m,i-1,a))h=m-1 ;
			else l=m ;
			for(;!c[c[0]]&&c[0]>1;c[0]--);
			c[0]=c[0]>1?c[0]:1 ;
}

void div(bignum_t a,const int b,int&c)
{
    int i ;
    for(c=0,i=a[0];i;c=c*DEPTH+a[i],a[i]=c/b,c%=b,i--);
    for(;!a[a[0]]&&a[0]>1;a[0]--);
}
/************************************************************************/
/* 大数平方根,读入大数a,结果保存在b[]数组里                           */
/* 需要comp()函数                                                       */
/************************************************************************/
void sqrt(bignum_t b,bignum_t a)
{
    int h,l,m,i ;
    memset((void*)b,0,sizeof(bignum_t));
    for(i=b[0]=(a[0]+1)>>1;i;sub(a,b,m,i-1),b[i]+=m,i--)
		for(h=DEPTH-1,l=0,b[i]=m=(h+l+1)>>1;h>l;b[i]=m=(h+l+1)>>1)
			if(comp(b,m,i-1,a))h=m-1 ;
			else l=m ;
			for(;!b[b[0]]&&b[0]>1;b[0]--);
			for(i=1;i<=b[0];b[i++]>>=1);
}
/************************************************************************/
/* 返回大数的长度                                                       */
/************************************************************************/
int length(const bignum_t a)
{
    int t,ret ;
    for(ret=(a[0]-1)*DIGIT,t=a[a[0]];t;t/=10,ret++);
    return ret>0?ret:1 ;
}
/************************************************************************/
/* 返回指定位置的数字,从低位开始数到第b位,返回b位上的数               */
/************************************************************************/
int digit(const bignum_t a,const int b)
{
    int i,ret ;
    for(ret=a[(b-1)/DIGIT+1],i=(b-1)%DIGIT;i;ret/=10,i--);
    return ret%10 ;
}
/************************************************************************/
/* 返回大数末尾0的个数                                                  */
/************************************************************************/
int zeronum(const bignum_t a)
{
    int ret,t ;
    for(ret=0;!a[ret+1];ret++);
    for(t=a[ret+1],ret*=DIGIT;!(t%10);t/=10,ret++);
    return ret ;
}

void comp(int*a,const int l,const int h,const int d)
{
    int i,j,t ;
    for(i=l;i<=h;i++)
		for(t=i,j=2;t>1;j++)
			while(!(t%j))
				a[j]+=d,t/=j ;
}

void convert(int*a,const int h,bignum_t b)
{
    int i,j,t=1 ;
    memset(b,0,sizeof(bignum_t));
    for(b[0]=b[1]=1,i=2;i<=h;i++)
		if(a[i])
			for(j=a[i];j;t*=i,j--)
				if(t*i>DEPTH)
					mul(b,t),t=1 ;
				mul(b,t);
}
/************************************************************************/
/* 组合数                                                               */
/************************************************************************/
void combination(bignum_t a,int m,int n)
{
    int*t=new int[m+1];
    memset((void*)t,0,sizeof(int)*(m+1));
    comp(t,n+1,m,1);
    comp(t,2,m-n,-1);
    convert(t,m,a);
    delete[]t ;
}
/************************************************************************/
/* 排列数                                                               */
/************************************************************************/
void permutation(bignum_t a,int m,int n)
{
    int i,t=1 ;
    memset(a,0,sizeof(bignum_t));
    a[0]=a[1]=1 ;
    for(i=m-n+1;i<=m;t*=i++)
		if(t*i>DEPTH)
			mul(a,t),t=1 ;
		mul(a,t);
}

#define SGN(x) ((x)>0?1:((x)<0?-1:0))
#define ABS(x) ((x)>0?(x):-(x))

int read(bignum_t a,int&sgn,istream&is=cin)
{
    char str[MAX*DIGIT+2],ch,*buf ;
    int i,j ;
    memset((void*)a,0,sizeof(bignum_t));
    if(!(is>>str))return 0 ;
    buf=str,sgn=1 ;
    if(*buf=='-')sgn=-1,buf++;
    for(a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--)
		ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch ;
    for(a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0');
    for(i=1;i<=a[0];i++)
		for(a[i]=0,j=0;j<DIGIT;j++)
			a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0' ;
		for(;!a[a[0]]&&a[0]>1;a[0]--);
		if(a[0]==1&&!a[1])sgn=0 ;
		return 1 ;
}
struct bignum 
{
    bignum_t num ;
    int sgn ;
public :
    inline bignum()
    {
        memset(num,0,sizeof(bignum_t));
        num[0]=1 ;
        sgn=0 ;
    }
    inline int operator!()
    {
        return num[0]==1&&!num[1];
    }
    inline bignum&operator=(const bignum&a)
    {
        memcpy(num,a.num,sizeof(bignum_t));
        sgn=a.sgn ;
        return*this ;
    }
    inline bignum&operator=(const int a)
    {
        memset(num,0,sizeof(bignum_t));
        num[0]=1 ;
        sgn=SGN (a);
        add(num,sgn*a);
        return*this ;
    }
    ;
    inline bignum&operator+=(const bignum&a)
    {
        if(sgn==a.sgn)add(num,a.num);
        else if         
			(sgn&&a.sgn)
        {
            int ret=comp(num,a.num);
            if(ret>0)sub(num,a.num);
            else if(ret<0)
            {
                bignum_t t ;
                memcpy(t,num,sizeof(bignum_t));
                memcpy(num,a.num,sizeof(bignum_t));
                sub (num,t);
                sgn=a.sgn ;
            }
            else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ;
        }
        else if(!sgn)
			memcpy(num,a.num,sizeof(bignum_t)),sgn=a.sgn ;
        return*this ;
    }
    inline bignum&operator+=(const int a)
    {
        if(sgn*a>0)add(num,ABS(a));
        else if(sgn&&a)
        {
            int  ret=comp(num,ABS(a));
            if(ret>0)sub(num,ABS(a));
            else if(ret<0)
            {
                bignum_t t ;
                memcpy(t,num,sizeof(bignum_t));
                memset(num,0,sizeof(bignum_t));
                num[0]=1 ;
                add(num,ABS (a));
                sgn=-sgn ;
                sub(num,t);
            }
            else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ;
        }
        else if 
			(!sgn)sgn=SGN(a),add(num,ABS(a));
        return*this ;
    }
    inline bignum operator+(const bignum&a)
    {
        bignum ret ;
        memcpy(ret.num,num,sizeof (bignum_t));
        ret.sgn=sgn ;
        ret+=a ;
        return ret ;
    }
    inline bignum operator+(const int a)
    {
        bignum ret ;
        memcpy(ret.num,num,sizeof (bignum_t));
        ret.sgn=sgn ;
        ret+=a ;
        return ret ;
    }
    inline bignum&operator-=(const bignum&a)
    {
        if(sgn*a.sgn<0)add(num,a.num);
        else if         
			(sgn&&a.sgn)
        {
            int ret=comp(num,a.num);
            if(ret>0)sub(num,a.num);
            else if(ret<0)
            {
                bignum_t t ;
                memcpy(t,num,sizeof(bignum_t));
                memcpy(num,a.num,sizeof(bignum_t));
                sub(num,t);
                sgn=-sgn ;
            }
            else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ;
        }
        else if(!sgn)add (num,a.num),sgn=-a.sgn ;
        return*this ;
    }
    inline bignum&operator-=(const int a)
    {
        if(sgn*a<0)add(num,ABS(a));
        else if(sgn&&a)
        {
            int  ret=comp(num,ABS(a));
            if(ret>0)sub(num,ABS(a));
            else if(ret<0)
            {
                bignum_t t ;
                memcpy(t,num,sizeof(bignum_t));
                memset(num,0,sizeof(bignum_t));
                num[0]=1 ;
                add(num,ABS(a));
                sub(num,t);
                sgn=-sgn ;
            }
            else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ;
        }
        else if 
			(!sgn)sgn=-SGN(a),add(num,ABS(a));
        return*this ;
    }
    inline bignum operator-(const bignum&a)
    {
        bignum ret ;
        memcpy(ret.num,num,sizeof(bignum_t));
        ret.sgn=sgn ;
        ret-=a ;
        return ret ;
    }
    inline bignum operator-(const int a)
    {
        bignum ret ;
        memcpy(ret.num,num,sizeof(bignum_t));
        ret.sgn=sgn ;
        ret-=a ;
        return ret ;
    }
    inline bignum&operator*=(const bignum&a)
    {
        bignum_t t ;
        mul(t,num,a.num);
        memcpy(num,t,sizeof(bignum_t));
        sgn*=a.sgn ;
        return*this ;
    }
    inline bignum&operator*=(const int a)
    {
        mul(num,ABS(a));
        sgn*=SGN(a);
        return*this ;
    }
    inline bignum operator*(const bignum&a)
    {
        bignum ret ;
        mul(ret.num,num,a.num);
        ret.sgn=sgn*a.sgn ;
        return ret ;
    }
    inline bignum operator*(const int a)
    {
        bignum ret ;
        memcpy(ret.num,num,sizeof (bignum_t));
        mul(ret.num,ABS(a));
        ret.sgn=sgn*SGN(a);
        return ret ;
    }
    inline bignum&operator/=(const bignum&a)
    {
        bignum_t t ;
        div(t,num,a.num);
        memcpy (num,t,sizeof(bignum_t));
        sgn=(num[0]==1&&!num[1])?0:sgn*a.sgn ;
        return*this ;
    }
    inline bignum&operator/=(const int a)
    {
        int t ;
        div(num,ABS(a),t);
        sgn=(num[0]==1&&!num [1])?0:sgn*SGN(a);
        return*this ;
    }
    inline bignum operator/(const bignum&a)
    {
        bignum ret ;
        bignum_t t ;
        memcpy(t,num,sizeof(bignum_t));
        div(ret.num,t,a.num);
        ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*a.sgn ;
        return ret ;
    }
    inline bignum operator/(const int a)
    {
        bignum ret ;
        int t ;
        memcpy(ret.num,num,sizeof(bignum_t));
        div(ret.num,ABS(a),t);
        ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*SGN(a);
        return ret ;
    }
    inline bignum&operator%=(const bignum&a)
    {
        bignum_t t ;
        div(t,num,a.num);
        if(num[0]==1&&!num[1])sgn=0 ;
        return*this ;
    }
    inline int operator%=(const int a)
    {
        int t ;
        div(num,ABS(a),t);
        memset(num,0,sizeof (bignum_t));
        num[0]=1 ;
        add(num,t);
        return t ;
    }
    inline bignum operator%(const bignum&a)
    {
        bignum ret ;
        bignum_t t ;
        memcpy(ret.num,num,sizeof(bignum_t));
        div(t,ret.num,a.num);
        ret.sgn=(ret.num[0]==1&&!ret.num [1])?0:sgn ;
        return ret ;
    }
    inline int operator%(const int a)
    {
        bignum ret ;
        int t ;
        memcpy(ret.num,num,sizeof(bignum_t));
        div(ret.num,ABS(a),t);
        memset(ret.num,0,sizeof(bignum_t));
        ret.num[0]=1 ;
        add(ret.num,t);
        return t ;
    }
    inline bignum&operator++()
    {
        *this+=1 ;
        return*this ;
    }
    inline bignum&operator--()
    {
        *this-=1 ;
        return*this ;
    }
    ;
    inline int operator>(const bignum&a)
    {
        return sgn>0?(a.sgn>0?comp(num,a.num)>0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<0:0):a.sgn<0);
    }
    inline int operator>(const int a)
    {
        return sgn>0?(a>0?comp(num,a)>0:1):(sgn<0?(a<0?comp(num,-a)<0:0):a<0);
    }
    inline int operator>=(const bignum&a)
    {
        return sgn>0?(a.sgn>0?comp(num,a.num)>=0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<=0:0):a.sgn<=0);
    }
    inline int operator>=(const int a)
    {
        return sgn>0?(a>0?comp(num,a)>=0:1):(sgn<0?(a<0?comp(num,-a)<=0:0):a<=0);
    }
    inline int operator<(const bignum&a)
    {
        return sgn<0?(a.sgn<0?comp(num,a.num)>0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<0:0):a.sgn>0);
    }
    inline int operator<(const int a)
    {
        return sgn<0?(a<0?comp(num,-a)>0:1):(sgn>0?(a>0?comp(num,a)<0:0):a>0);
    }
    inline int operator<=(const bignum&a)
    {
        return sgn<0?(a.sgn<0?comp(num,a.num)>=0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<=0:0):a.sgn>=0);
    }
    inline int operator<=(const int a)
    {
        return sgn<0?(a<0?comp(num,-a)>=0:1):
        (sgn>0?(a>0?comp(num,a)<=0:0):a>=0);
    }
    inline int operator==(const bignum&a)
    {
        return(sgn==a.sgn)?!comp(num,a.num):0 ;
    }
    inline int operator==(const int a)
    {
        return(sgn*a>=0)?!comp(num,ABS(a)):0 ;
    }
    inline int operator!=(const bignum&a)
    {
        return(sgn==a.sgn)?comp(num,a.num):1 ;
    }
    inline int operator!=(const int a)
    {
        return(sgn*a>=0)?comp(num,ABS(a)):1 ;
    }
    inline int operator[](const int a)
    {
        return digit(num,a);
    }
    friend inline istream&operator>>(istream&is,bignum&a)
    {
        read(a.num,a.sgn,is);
        return  is ;
    }
    friend inline ostream&operator<<(ostream&os,const bignum&a)
    {
        if(a.sgn<0)
			os<<'-' ;
        write(a.num,os);
        return os ;
    }
    friend inline bignum sqrt(const bignum&a)
    {
        bignum ret ;
        bignum_t t ;
        memcpy(t,a.num,sizeof(bignum_t));
        sqrt(ret.num,t);
        ret.sgn=ret.num[0]!=1||ret.num[1];
        return ret ;
    }
    friend inline bignum sqrt(const bignum&a,bignum&b)
    {
        bignum ret ;
        memcpy(b.num,a.num,sizeof(bignum_t));
        sqrt(ret.num,b.num);
        ret.sgn=ret.num[0]!=1||ret.num[1];
        b.sgn=b.num[0]!=1||ret.num[1];
        return ret ;
    }
    inline int length()
    {
        return :: length(num);
    }
    inline int zeronum()
    {
        return :: zeronum(num);
    }
    inline bignum C(const int m,const int n)
    {
        combination(num,m,n);
        sgn=1 ;
        return*this ;
    }
    inline bignum P(const int m,const int n)
    {
        permutation(num,m,n);
        sgn=1 ;
        return*this ;
    }
};
/*int main()
{   
bignum a,b,c;	
cin>>a>>b;	
cout<<"加法:"<<a+b<<endl;
cout<<"减法:"<<a-b<<endl;
cout<<"乘法:"<<a*b<<endl;
cout<<"除法:"<<a/b<<endl;	
c=sqrt(a);
cout<<"平方根:"<<c<<endl;
cout<<"a的长度:"<<a.length()<<endl;
cout<<"a的末尾0个数:"<<a.zeronum()<<endl<<endl;
cout<<"组合: 从10个不同元素取3个元素组合的所有可能性为"<<c.C(10,3)<<endl;
cout<<"排列: 从10个不同元素取3个元素排列的所有可能性为"<<c.P(10,3)<<endl;
return 0 ;
}*/  
/
/*上面是一个完整的大数模板  已经功能的演示   我只是在下面修改了主函数和加入了 get_prime */
int main()
{   
	bignum a,b,c;
	int cas,t;
	//while(!cin.eof())	  这句话 不用加  直接while(cin>>...)根本不用加eof 
	//	{
	t=0;
	cin>>cas;  
	while(cas--)  
	{
		cin>>a>>b;
	       cout<<"Case "<<++t<<":"<<endl;
		   cout<<a<<" + "<<b <<" = "<<a+b<<endl;
		   if(cas!=0) cout<<""<<endl;  //<<""   这个就代表一个换行符了 以前没有用过cout  长见识了
	}
	//	}
    return 0 ;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值