二叉树的深度优先遍历和广度优先遍历

二叉树结构简单,存储效率高,算法简单,每个结点至多有两个子树,两个子树有左右之分,次序不能颠倒。

二叉树的存储结构分为:顺序存储结构和链式存储结构。

1.顺序存储结构

把一棵满二叉树自上而下,从左到右顺序编号,把编号依次存放在数组中,如下图所示:

设满二叉树结点在数组中索引号为i,那么有如下性质:

(1)如果i=0,此结点无双亲,为根结点

(2)如果i>0,其双亲结点为(i-1)/2 ,这里为整除,保留整数位

(3)结点为i 的左孩子为2i+1,右孩子为2i+2

(4)如果i>0,当i为奇数时,它是双亲结点的左孩子,兄弟为i+1;当i为偶数时,它是双亲结点的右孩子,兄弟结点为i-1

(5)深度为k的满二叉树需要长度为2^k  -1 的数组进行存储。

2.链式存储

当k值很大时,又有很多空结点的时候,使用顺序存储结构来存储,会造成极大的浪费,这时应使用链式存储结构来存储

3.二叉树遍历

树遍历的本质是将非线性结构线性化

二叉树的深度优先遍历,分为如下三种:(先左后右)

1.先序遍历,访问根结点,先序遍历左子树,先序遍历右子树,上图遍历结果为:0134256

2.中序遍历,中序遍历左子树,访问根结点,中序遍历右子树,遍历结果为:3140526

3.后序遍历,后序遍历左子树,后续遍历右子树,访问根结点,遍历结果:3415620

代码实现:

结点类:

 class Node
    {
        //数据
        private object _data;
        //左孩子
        private Node _left;
        //右孩子
        private Node _right;
        public object Data
        {
            get
            {
                return _data;
            }
        }
        public Node Left
        {
            get { return _left; }
            set { _left = value; }
        }
        public Node Right
        {
            get { return _right; }
            set { _right = value; }
        }

        public Node(object data)
        {
            _data = data;
        }
        public override string ToString()
        {
            return _data.ToString();
        }

    }

二叉树集合类:

 //头指针
        private Node _head;
        //构造二叉树的字符串
        private string _Str;
        public Node Head
        {
            get
            {
                return _head;
            }
        }
        public OurTree(string str)
        {
            _Str = str;
            //添加头结点
            _head = new Node(_Str[0]);
            //给头结点添加孩子结点
            Add(_head, 0);

        }
        private void Add(Node parent,int index)
        {
            //计算左孩子索引
            int leftIndex = 2 * index + 1;
            //如果索引没有超过字符串长度
            if (leftIndex<_Str.Length)
            {
                // '#表示空结点'
                if (_Str[leftIndex] != '#') 
                {
                    //添加左孩子
                    parent.Left = new Node(_Str[leftIndex]);
                    //递归调用Add 给左孩子添加孩子结点
                    Add(parent.Left, leftIndex);
                }
            }
            int rightIndex = 2 * index + 2;
            if (rightIndex < _Str.Length) 
            {
                if (_Str[rightIndex] != '#') 
                {
                    parent.Right = new Node(_Str[rightIndex]);
                    Add(parent.Right, rightIndex);
                }
            }
        }

三种遍历方式:

 //先序遍历
        public void PreOrder(Node node)
        {
            if (node!=null)
            {
                Console.Write(node);
                PreOrder(node.Left);
                PreOrder(node.Right);
            }
        }

        //中序遍历
        public void MidOrder(Node node)
        {
            if (node!=null)
            {
                MidOrder(node.Left);
                Console.Write(node);
                MidOrder(node.Right);
            }
        }

        //后序遍历
        public void AfterOrder(Node node)
        {
            if (node!=null)
            {
                AfterOrder(node.Left);
                AfterOrder(node.Right);
                Console.Write(node);
            }
        }

测试代码:

 OurTree tree = new OurTree("ABCDE#F");
            tree.PreOrder(tree.Head);
            Console.WriteLine();
            tree.MidOrder(tree.Head);
            Console.WriteLine();
            tree.AfterOrder(tree.Head);
            Console.ReadKey();

结果:

4.二叉树的广度优先遍历

与深度优先遍历不同的是,广度优先遍历是先搜索所有兄弟和堂兄弟结点再搜索子孙结点。而深度优先遍历则是先搜索一个结点的所有子孙结点,再去搜索这个结点的兄弟结点。

广度优先遍历,不需要使用递归,借助队列来实现

代码如下:

 public void LevelOrder()
        {
            Queue<Node> queue = new Queue<Node>();
            queue.Enqueue(_head);
            while (queue.Count>0)
            {
                Node node = (Node)queue.Dequeue();
                Console.Write(node);
                if (node.Left != null) 
                {
                    queue.Enqueue(node.Left);
                }
                if (node.Right!=null)
                {
                    queue.Enqueue(node.Right);
                }
            }
        }

将根结点放入队列,分别判断左右孩子。

测试结果:

ABCDEF

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值