(三-2)随机森林回归器(共3小节,文章代码即文章中所有的代码)

3.2RandomForestRegressor

class sklearn.ensemble.RandomForestRegressor (n_estimators=’warn’, criterion=’mse’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False)

所有的参数,属性与接口,全部和随机森林分类器一致。仅有的不同就是回归树与分类树的不同,不纯度的指标, 参数Criterion不一致。

3.2重要参数,属性与接口

criterion

回归树衡量分枝质量的指标,支持的标准有三种:

1)输入"mse"使用均方误差mean squared error(MSE),父节点和叶子节点之间的均方误差的差额将被用来作为 特征选择的标准,这种方法通过使用叶子节点的均值来最小化L2损失

2)输入“friedman_mse”使用费尔德曼均方误差,这种指标使用弗里德曼针对潜在分枝中的问题改进后的均方误差

3)输入"mae"使用绝对平均误差MAE(mean absolute error),这种指标使用叶节点的中值来最小化L1损失

其中N是样本数量,i是每一个数据样本,fi是模型回归出的数值,yi是样本点i实际的数值标签。所以MSE的本质, 其实是样本真实数据与回归结果的差异。在回归树中,MSE不只是我们的分枝质量衡量指标,也是我们最常用的衡 量回归树回归质量的指标,当我们在使用交叉验证,或者其他方式获取回归树的结果时,我们往往选择均方误差作 为我们的评估(在分类树中这个指标是score代表的预测准确率)。在回归中,我们追求的是,MSE越小越好。 然而,回归树的接口score返回的是R平方(R:(-oo,1]),并不是MSE。R平方被定义如下: 

其中u是残差平方和(MSE * N),v是总平方和,N是样本数量,i是每一个数据样本,fi是模型回归出的数值,yi

是样本点i实际的数值标签。y帽是真实数值标签的平均数。R平方可以为正为负(如果模型的残差平方和远远大于 模型的总平方和,模型非常糟糕,R平方就会为负),而均方误差永远为正。

值得一提的是,虽然均方误差永远为正,但是sklearn当中使用均方误差作为评判标准时,却是计算”负均方误 差“(neg_mean_squared_error)。这是因为sklearn在计算模型评估指标的时候,会考虑指标本身的性质,均 方误差本身是一种误差,所以被sklearn划分为模型的一种损失(loss),因此在sklearn当中,都以负数表示。真正的 均方误差MSE的数值,其实就是neg_mean_squared_error去掉负号的数字。

3.21重要属性和接口

最重要的属性和接口,都与随机森林的分类器相一致,还是apply, fit, predict和score最为核心。值得一提的是,随 机森林回归并没有predict_proba这个接口,因为对于回归来说,并不存在一个样本要被分到某个类别的概率问题,因此没有predict_proba这个接口。

from sklearn.datasets import load_boston
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestRegressor
boston = load_boston()
regressor = RandomForestRegressor(n_estimators=100,random_state=0)#实例化
cross_val_score(regressor, boston.data, boston.target, cv=10
                ,scoring = "neg_mean_squared_error")
#导入的参数分别是回归器,完整的特征矩阵,完整的特征,交叉验证的次数,交叉验证的得分(不写的话会默认返回R2))

 

  

cv=10是返回十次交叉验证的结果,注意在这里,如果不填写scoring = "neg_mean_squared_error",交叉验证默认的模型 衡量指标是R平方,因此交叉验证的结果可能有正也可能有负。而如果写上scoring,则衡量标准是负MSE,交叉验 证的结果只可能为负。

这里也给大家介绍一个当我们想用其他评估指标时可以用一下的来查看评估指标,选择我们需要代入上式就行

#sklearn当中的模型评估指标(打分)的列表
import sklearn
sorted(sklearn.metrics.SCORERS.keys())#这里出现的都是评估指标

 3.3 实例:用随机森林回归填补缺失值

我们从现实中收集的数据,几乎不可能是完美无缺的,往往都会有一些缺失值。面对缺失值,很多人选择的方式是 直接将含有缺失值的样本删除,这是一种有效的方法,但是有时候填补缺失值会比直接丢弃样本效果更好,即便我们其实并不知道缺失值的真实样貌。但是我们可以用随机森林来有效的有效的填补,在sklearn中,我们可以使用sklearn.impute.SimpleImputer来轻松地将均值,中值,或者其他最常用的数值填补到数据中,在这个案例中,我们将使用均值,0,和随机森林回归来填补缺失值,并验证四种状况下的拟合状况,找出对使用的数据集来说最佳的缺失值填补方法。

1. 导入需要的库

import numpy as np
import pandas as pd #这个在我们数据分析中,基本都要用上,所以只要分析就导入就得了
import matplotlib.pyplot as plt
from sklearn.datasets import load_boston
from sklearn.impute import SimpleImputer
from sklearn.ensemble import RandomForestRegressor

2. 以波士顿数据集为例,导入完整的数据集并探

dataset = load_boston()
dataset.data.shape #506个样本,13个特征
#(506,,13)

#总共506*13=6578个数据
x_full,y_full = dataset.data,dataset.target
n_samples = x_full.shape[0]#506
n_features = x_full.shape[1]#13

3. 为完整数据集放入缺失值

#首先确定我们希望放入的缺失数据的比例,在这里我们假设是50%,那总共就要有3289个数据缺失
rng = np.random.RandomState(0)#这是确认一种随机模式,下面我们要用到rng的地方我们都用rng代替即可
missing_rate = 0.5#缺失率
n_missing_samples = int(np.floor(n_samples * n_features * missing_rate))
#上面的为什么会加np.floor呢,可能有人会有有疑惑,加floor主要是因为缺失率乘完后可能是有小数
#np.floor向下取整,返回.0格式的浮点数

n_missing_samples
#3289
#所有数据要随机遍布在数据集的各行各列当中,而一个缺失的数据会需要一个行索引和一个列索引
#如果能够创造一个数组,包含3289个分布在0~506中间的行索引,和3289个分布在0~13之间的列索引,那我们就可以利用索引来为数据中的任意3289个位置赋空值
#然后我们用0,均值和随机森林来填写这些缺失值,然后查看回归的结果如何

missing_features = rng.randint(0,n_features,n_missing_samples)
#randint(下限,上限,n),在下限和上限之间取出n个整数
missing_samples = rng.randint(0,n_samples,n_missing_samples)

#missing_samples = rng.choice(dataset.data.shape[0],n_missing_samples,replace=False)
#我们现在采样了3289个数据,远远超过我们的样本量506,所以我们使用随机抽取的函数randint。但如果我们需要
#的数据量小于我们的样本量506,那我们可以采用np.random.choice来抽样,choice会随机抽取不重复的随机数,
#因此可以帮助我们让数据更加分散,确保数据不会集中在一些行中
#这里的replace=False就是不重复,所以这里用重复,因为数据不够嘛
x_missing = x_full.copy()

y_missing = y_full.copy()

#转换成DataFrame是为了后续方便各种操作,numpy对矩阵的运算速度快到拯救人生,但是在索引等功能上却不如pandas来得好用

x_missing

x_missing得出的结果就如下:

通过choice的功能实现如下

x_missing[missing_samples,missing_features] = np.nan
x_missing

 这样就实现了在数据集中填补缺失值

x_missing = pd.DataFrame(x_missing)
x_missing

我们将其转化为表格数据

x_missing_mean

4. 使用0和均值填补缺失值

#使用均值进行填补

from sklearn.impute import SimpleImputer
imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
#实例化,这里的missing_values=np.nan就是缺失值是表现为什么的;strategy='mean'就是用均值来填补。

X_missing_mean = imp_mean.fit_transform(X_missing)
#这里就是训练,训练fit+导出predict>>>特殊借口fit_transform
 

x_missing_mean

 如果我们想查看缺失情况直接用isnull是会报错的

 所以我们的先变成表形式


#所以我们要把它变成表
pd.DataFrame(x_missing_mean).isnull()

#直接观察表的话不现实,如何确定有没有呢,我们用pd.DataFrame(x_missing_mean).isnull().sum() 

pd.DataFrame(x_missing_mean).isnull().sum()

 

我们来看看直接用0来填补是什么样的

#使用0进行填补
imp_0 = SimpleImputer(missing_values=np.nan, strategy="constant",fill_value=0)

x_missing_0 = imp_0.fit_transform(x_missing)
pd.DataFrame(x_missing_0)

5. 使用随机森林填补缺失值

"""

使用随机森林回归填补缺失值

任何回归都是从特征矩阵中学习,然后求解连续型标签y的过程,之所以能够实现这个过程,是因为回归算法认为,特征 矩阵和标签之前存在着某种联系。实际上,标签和特征是可以相互转换的,比如说,在一个“用地区,环境,附近学校数 量”预测“房价”的问题中,我们既可以用“地区”,“环境”,“附近学校数量”的数据来预测“房价”,也可以反过来, 用“环境”,“附近学校数量”和“房价”来预测“地区”。而回归填补缺失值,正是利用了这种思想。

对于一个有n个特征的数据来说,其中特征T有缺失值,我们就把特征T当作标签,其他的n-1个特征和原本的标签组成新 的特征矩阵。那对于T来说,它没有缺失的部分,就是我们的Y_test,这部分数据既有标签也有特征,而它缺失的部 分,只有特征没有标签,就是我们需要预测的部分。

特征T不缺失的值对应的其他n-1个特征 + 本来的标签:X_train

特征T不缺失的值:Y_train

特征T缺失的值对应的其他n-1个特征 + 本来的标签:X_test

特征T缺失的值:未知,我们需要预测的Y_test

这种做法,对于某一个特征大量缺失,其他特征却很完整的情况,非常适用。

那如果数据中除了特征T之外,其他特征也有缺失值怎么办? 答案是遍历所有的特征,从缺失最少的开始进行填补(因为填补缺失最少的特征所需要的准确信息最少)。 填补一个特征时,先将其他特征的缺失值用0代替,每完成一次回归预测,就将预测值放到原本的特征矩阵中,再继续填 补下一个特征。每一次填补完毕,有缺失值的特征会减少一个,所以每次循环后,需要用0来填补的特征就越来越少。当 进行到最后一个特征时(这个特征应该是所有特征中缺失值最多的),已经没有任何的其他特征需要用0来进行填补了, 而我们已经使用回归为其他特征填补了大量有效信息,可以用来填补缺失最多的特征。 遍历所有的特征后,数据就完整,不再有缺失值了。

"""

X_missing_reg = x_missing.copy()
#找出数据集中,缺失值从小到大排列的特征的顺序

sortindex = np.argsort(X_missing_reg.isnull().sum(axis=0)).values
#axis=0这里的按列进行加和,这里的argsort会返回从小到大的顺序所对应的索引,sort()这不会有排序索引
#所以我们只要按这个又小到大进行遍历
for i in sortindex:
    #构建我们的新特征矩阵(没有被选中去填充的特征+原始数据)和新标签(被选中的填充的特征)
    df = X_missing_reg #这里是训练完后的再填回X_missing_reg,所以这里每次循环都要调用这个原始的表。
    #这个就是构建列新标签
    fillc = df.iloc[:,i]#一维数组

    df = pd.concat([df.iloc[:,df.columns != i],pd.DataFrame(y_full)],axis=1)#这部分就是没有被选中去填充的特征,y_full为原始数据
    #df.columns != i转为布尔值,df.iloc[:,df.columns != i将索引为i之外的特征列取出
    #在新特征矩阵中,对含有缺失值的列,进行0的填补

    df_0 =SimpleImputer(missing_values=np.nan,
                        strategy='constant',fill_value=0).fit_transform(df)

    #找出我们的训练集和测试集

    Ytrain = fillc[fillc.notnull()]#被选中要填充的特征,存在的那些值,非空值
    Ytest = fillc[fillc.isnull()]#是被选中要被填充的特正,不存在的那些值,是空值
    #Ytest实际是不需要用到的,但是我们需要它的索引

    #在新特正矩阵上,被选出来的填充的特征的非空值所对应的记录
    Xtrain = df_0[Ytrain.index,:]
    #在新特正矩阵上,被选出来的填充的特征的空值所对应的记录
    Xtest = df_0[Ytest.index,:]

    #用随机森林回归来填补缺失值
    rfc = RandomForestRegressor(n_estimators=100)#实例化
    rfc = rfc.fit(Xtrain, Ytrain)#导入训练集进行训练
    Ypredict = rfc.predict(Xtest)
    #用predict接口将Xtest导入,得到的我们预测结果(回归结果),就是我们要用来填补空值的这些值

    #将填补好的特征返回到我们的原始的特征矩阵中
    X_missing_reg.loc[X_missing_reg.iloc[:,i].isnull(),i] = Ypredict#将i列缺失值进行填补

 

 len(predict)=185

这个就是要填补的空值,我们支将只要将其填入。

X_missing_reg

 6. 对填补好的数据进行建模

X = [x_full,x_missing_mean,x_missing_0,X_missing_reg]
mse = []
std = []
for x in X:
    estimator = RandomForestRegressor(random_state=0, n_estimators=100)#实例化
    scores = cross_val_score(estimator,x,y_full,scoring='neg_mean_squared_error', cv=5).mean()
#交叉验证打分,参数:评估器,特征,标签,负的均方误差,交叉验证次数
    mse.append(scores * -1)
[*zip(["x_full","x_missing_mean","x_missing_0","X_missing_reg"],mse)]

7. 用所得结果画出条形图

x_labels = ['Full data',
            'Zero Imputation',
            'Mean Imputation',
            'Regressor Imputation']

colors = ['r', 'g', 'b', 'orange']
plt.figure(figsize=(12, 6))

ax = plt.subplot(111)

for i in np.arange(len(mse)):
    ax.barh(i, mse[i],color=colors[i], alpha=0.6, align='center')#barh的是指横向

ax.set_title('Imputation Techniques with Boston Data')
ax.set_xlim(left=np.min(mse) * 0.9,right=np.max(mse) * 1.1)
ax.set_yticks(np.arange(len(mse)))
ax.set_xlabel('MSE')
ax.set_yticklabels(x_labels)
plt.show()

  • 10
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自由翱翔的怪怪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值