LabelImg官方文档:https://github.com/HumanSignal/labelImg
注释(annotation)以 PASCAL VOC 格式保存为 XML 文件,这是ImageNet使用的格式。此外,它还支持 YOLO 和 CreateML 格式。
安装
使用CSDN博主打包的程序(43M),亲测可用:博文中提供了百度网盘链接。
使用
创建预定义的类
在 data/predefined_classes.txt
中预定义类。
注释可视化
- 将现有的标签文件复制到与图像相同的文件夹中。标签文件名必须与图像文件名相同。
- 单击文件并选择“打开目录”,然后打开图像文件夹。
- 在文件列表中选择图像,它将显示该图像中所有对象的边界框和标签。(在视图中选择显示标签模式以显示/隐藏标签)
热键
热键 | 功能 |
---|---|
Ctrl + u | 从目录加载所有图像 |
Ctrl + r | 更改默认注释目标目录 |
Ctrl + s | 保存 |
Ctrl + d | 复制当前标签和矩形框 |
Ctrl + Shift + d | 删除当前图像 |
Space | 将当前图像标记为已验证 |
w | 创建一个矩形框 |
d | 下一张图片 |
a | 上一张图片 |
del | 删除选中的矩形框 |
Ctrl++ | 放大 |
Ctrl– | 缩小 |
↑→↓← | 键盘箭头移动选定的矩形框 |
验证图像:
如果将图像标记为已验证,将出现绿色背景。这在自动创建数据集时使用,然后用户可以浏览所有图片并标记(flag)它们而不是注释(annotate)它们。
困难:
困难字段设置为 1 表示该对象已被注释为“困难”,例如,一个清晰可见但在没有大量使用上下文的情况下难以识别的对象。根据您的深度神经网络实现,您可以在训练期间包含或排除困难的对象。
如何重置设置
如果加载类时出现问题,您可以:从 labelimg 的顶部菜单中单击 Menu/File/Reset All。