论文阅读[268]基于EEM荧光光谱,感知燃烧产生的颗粒物

该博士论文介绍了如何利用主成分回归(PCR)结合三维荧光光谱(EEM)预测燃烧产生的颗粒物(PM)中的多环芳烃(PAH)浓度。通过PCA约简EEM数据,建立线性模型,实现了对HMW-PAH的高精度预测,R2=0.993,但在LMW-PAH上的预测效果较差,R2=0.682。PCR-EEM方法在监测PM暴露方面展现出成本效益和效率优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【论文基本信息】
标题:EEM Fluorescence Spectroscopy based Sensing of Combustion Generated Particulate Matter
来源与类型:华盛顿大学,博士学位论文
推荐理由:论文作者将主成分回归(PCR)方法与三维荧光光谱结合,预测样本中特定类污染物的总浓度,准确率达到了97.6%。论文中使用的数据和程序公开发布在Github平台上。本人经过尝试,成功复现了论文中的三张插图。

1 介绍

1.1 背景

颗粒物(PM)是一种污染物,排放来源包括自然和人为,包括农业过程、工业燃烧源、森林火灾等。

通过环境和职业接触的PM与不利的健康影响有关。PM污染接触已被证明在2016年造成420万人死亡。

然而,目前的暴露监测方法不能对收集的样品进行化学分析,特别是在野外环境中。

我们需要可靠和低成本的采样和分析策略来测量个人暴露于PM2.5的程度。

这种改进的评估方法可以改进人类健康风险评估。

1.2 燃烧气溶胶中的多环芳烃

燃烧产生气溶胶,其中含有多环芳烃(PAH),它是具有2-7个芳香环的有机化合物,是最早与致癌有关的大气污染物之一。

PAH一般可分为两类:低分子量(LMW<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值