论文解读: 2023-“Low-Resource” Text Classification: A Parameter-Free Cla

Title: “Low-Resource” Text Classification: A Parameter-Free ClassificationMethod with Compressors
URL: aclanthology.org/202...
Code: github.com/bazingagi...

文本分类作为自然语言处理(NLP)中最基本的任务之一,在神经网络的帮助下得到了显著的改进。然而,大多数神经网络都是数据饥饿的,其程度随着参数的数量而增加。必须针对不同的数据集仔细调整超参数,并且文本数据的预处理(例如,分词、删除停用词等)需要根据特定的模型和数据集进行调整。尽管复杂的深度神经网络能够捕捉潜在的相关性并识别隐式模式,但对于主题分类等简单任务来说,它们可能过于致命,而轻量的替代品通常就足够了。

1. Motivation

问题:深度神经网络参数量大,需要大量的标记数据,使用成本高。

2. Contribution

  • 将NCD与KNN用于主题分类

  • 与未训练的DNN相当

  • OOD数据集上,由于所有的方法,包括使用预训练模型的方法

  • 适用于少样本数据集

3. Metho

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值