Title: “Low-Resource” Text Classification: A Parameter-Free ClassificationMethod with Compressors
URL: aclanthology.org/202...
Code: github.com/bazingagi...
文本分类作为自然语言处理(NLP)中最基本的任务之一,在神经网络的帮助下得到了显著的改进。然而,大多数神经网络都是数据饥饿的,其程度随着参数的数量而增加。必须针对不同的数据集仔细调整超参数,并且文本数据的预处理(例如,分词、删除停用词等)需要根据特定的模型和数据集进行调整。尽管复杂的深度神经网络能够捕捉潜在的相关性并识别隐式模式,但对于主题分类等简单任务来说,它们可能过于致命,而轻量的替代品通常就足够了。
1. Motivation
问题:深度神经网络参数量大,需要大量的标记数据,使用成本高。
2. Contribution
-
将NCD与KNN用于主题分类
-
与未训练的DNN相当
-
OOD数据集上,由于所有的方法,包括使用预训练模型的方法
-
适用于少样本数据集