【YOLOv8改进-损失函数】YOLOv8 更换损失函数之 SIoU EIoU WIoU _ Focal_*IoU CIoU DIoU ShapeIoU MPDIou

本文深入探讨了YOLOv8目标检测模型中损失函数的改进,从GIoU、DIoU、CIoU、EIoU、WIoU、SIoU到MPDIoU和ShapeIoU,以及Focal_*IoU系列。通过引入各种损失函数,旨在优化边界框的位置、形状和中心点距离,提升模型的检测精度。文章详细介绍了每个损失函数的基本原理和实现方法,并提供了代码实现链接,供读者实践和验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

GIoU

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

广义IoU(GIoU,Generalized IoU)的计算公式是在标准IoU的基础上进行扩展,加入了对边界框相对位置的补偿。其公式如下:

GIoU = IoU − ∣ C − ( A ∪ B ) ∣ ∣ C ∣ \text{GIoU} = \text{IoU} - \frac{|C - (A \cup B)|}{|C|} GIoU=IoUCC(AB)

其中:

  • IoU \text{IoU}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值