YOLO目标检测创新改进与实战案例专栏
专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLO基础解析+创新改进+实战案例
GIoU
文章链接
论文地址:论文地址
代码地址:代码地址
基本原理
广义IoU(GIoU,Generalized IoU)的计算公式是在标准IoU的基础上进行扩展,加入了对边界框相对位置的补偿。其公式如下:
GIoU = IoU − ∣ C − ( A ∪ B ) ∣ ∣ C ∣ \text{GIoU} = \text{IoU} - \frac{|C - (A \cup B)|}{|C|} GIoU=IoU−∣C∣∣C−(A∪B)∣
其中:
- IoU \text{IoU}
本文深入探讨了YOLOv8目标检测模型中损失函数的改进,从GIoU、DIoU、CIoU、EIoU、WIoU、SIoU到MPDIoU和ShapeIoU,以及Focal_*IoU系列。通过引入各种损失函数,旨在优化边界框的位置、形状和中心点距离,提升模型的检测精度。文章详细介绍了每个损失函数的基本原理和实现方法,并提供了代码实现链接,供读者实践和验证。
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



