【三维重建】对极几何

基础矩阵与本质矩阵

极几何描述了同一场景或者物体的两个视点图像间的几何关系

公式推导:

基础矩阵具有以下几种性质:

求解基础矩阵

8点法求解基础矩阵

用对应点求解F

求出的\hat{F}往往是满秩的,而我们所要求的基础矩阵秩为2

RANSAC求解基础矩阵

单应性矩阵

如果采集到的对应点在同一平面,用8点法求基础矩阵时,列出的方程组是线性相关,无法求解。

因此,如果采集到的对应点在同一平面,两个视点间的对应关系用单应性矩阵表示。

在实际使用中,并不知道匹配的对应点十分是同一平面

一般情况下,基础矩阵和单应性矩阵都会求,看谁的重投影误差小。

M = K(I \ O),\ M' = K'(I\ O),\ P= (\tilde{P^T},1)^T \\ \\ p = M\begin{pmatrix} \tilde{P}\\1 \end{pmatrix} =K \tilde{P} \\ \\ p' = M'\begin{pmatrix} \tilde{P}\\1 \end{pmatrix}=K'(R \ t)\begin{pmatrix} \tilde{P} \\1 \end{pmatrix}=K'(R \tilde{P} + t)

n^T \tilde{P} = d \rightarrow n^T \tilde{P} / d = 1 \\ \\ let \ n / d = n_d , n_d^T \tilde{P} = 1

 p'=K'(R\tilde{P} + t \cdot n_d^T \tilde{P}) = K'(R + t \cdot n_d^T)\tilde{P} =K'(R + t \cdot n_d^T)K^{-1}p

 H = K'(R + t \cdot n_d^T)K^{-1}

p' = Hp

C++代码实现:https://github.com/ldx-star/Epipolar-Geometry.git

  • 7
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值