【三维重建】ePnP

PnP问题应用与一下场景:
已知三维点和对应二维点以及相机相机内参数,可以获取相机外参。请添加图片描述
我们介绍其中的一种算法:ePnP

算法流程

1、ePnP算法首先在世界坐标系内寻找4个控制点,记作 C 1 w , C 2 w , C 3 w , C 4 w C_1^w,C_2^w,C_3^w,C_4^w C1w,C2w,C3w,C4w,使得:
对于世界坐标系内任意一点 P 1 w , P_1^w, P1w,存在对应的 α i = [ α i 1 , α i 2 , α i 3 , α i 4 ] T \alpha_i=[\alpha_{i1},\alpha_{i2},\alpha_{i3},\alpha_{i4}]^T αi=[αi1,αi2,αi3,αi4]T,满足:
P i w = ∑ j = 1 4 α i j C j w , w i t h ∑ j = 1 4 α i j = 1 P_i^w = \sum_{j=1}^4\alpha_{ij}C_j^w, {\kern 20pt} with\sum_{j=1}^4\alpha_{ij}=1 Piw=j=14αijCjw,withj=14αij=1
世界坐标系上的 P w P^w Pw 经过 R , t R,t R,t 变换可以得到相机坐标系下的点 P c P^c Pc :
P i c = R P i w + t = R ( ∑ j = 1 4 α i j C j w ) + t P_i^c = RP_i^w+t=R\left(\sum_{j=1}^4\alpha_{ij}C_j^w\right) + t Pic=RPiw+t=R(j=14αijCjw)+t
由于 ∑ j = 1 4 α i j = 1 \sum_{j=1}^4\alpha_{ij}=1 j=14αij=1,因此 t = ∑ j = 1 4 α i j t t=\sum_{j=1}^4\alpha_{ij}t t=j=14αijt 带入上式得 ( C j w 是世界坐标系下的控制点, C j c 是世界坐标系下的控制点 ) (C_j^w是世界坐标系下的控制点,C_j^c是世界坐标系下的控制点) (Cjw是世界坐标系下的控制点,Cjc是世界坐标系下的控制点):
P i c = ∑ j − 1 4 α i j ( R C j w + t ) = ∑ j − 1 4 α i j C j c , ( C j c = R C j w + t ) P_i^c = \sum_{j-1}^4\alpha_{ij}(RC_j^w + t)= \sum_{j-1}^4\alpha_{ij}C_j^c,{\color{red} \left(C_j^c = RC_j^w+t \right)} Pic=j14αij(RCjw+t)=j14αijCjc,(Cjc=RCjw+t)

通过内参矩阵,建立相机坐标系下的点 P c P^c Pc 到像素坐标系下的点 p p p 的映射:
p i = s i [ u i v i 1 ] = K P i c = [ f u 0 u c 0 f v v c 0 0 1 ] ∑ j = 1 4 α i j [ C x j c C y j c C z j c ] p_i = s_i\begin{bmatrix}u_i \\ v_i \\ 1 \end{bmatrix} = KP^c_i=\begin{bmatrix}f_u &0 & u_c \\0& f_v & v_c \\ 0&0&1 \end{bmatrix}\sum_{j=1}^4\alpha_{ij}\begin{bmatrix}C_{xj}^c \\C_{yj}^c \\ C_{zj}^c \end{bmatrix} pi=si uivi1 =KPic= fu000fv0ucvc1 j=14αij CxjcCyjcCzjc
将公式展开,可得:
∑ j = 1 4 α i j f u C x j c + α i j ( u c − u i ) C z j c = 0 ∑ j = 1 4 α i j f v C y j c + α i j ( v c − v i ) C z j c = 0 \sum_{j=1}^4\alpha_{ij}f_uC^c_{xj} + \alpha_{ij}(u_c-u_i)C_{zj}^c = 0 \\ \sum_{j=1}^4\alpha_{ij}f_vC^c_{yj} + \alpha_{ij}(v_c-v_i)C_{zj}^c = 0 j=14αijfuCxjc+αij(ucui)Czjc=0j=14αijfvCyjc+αij(vcvi)Czjc=0
对于上述公式 只有相机坐标系下的四个控制点 C j c C_j^c Cjc​ 未知,每个控制点有三个参数,因此一共有12个未知数。每对点能建立两个方程组,所以,至少要6对点才能进行求解。
f u [ α i 1 α i 2 α i 3 α i 4 ] [ C x 1 c C x 2 c C x 3 c C x 4 c ] + ( u c − u i ) [ α i 1 α i 2 α i 3 α i 4 ] [ C z 1 c C z 2 c C z 3 c C z 4 c ] = 0 f v [ α i 1 α i 2 α i 3 α i 4 ] [ C y 1 c C y 2 c C y 3 c C y 4 c ] + ( v c − v i ) [ α i 1 α i 2 α i 3 α i 4 ] [ C z 1 c C z 2 c C z 3 c C z 4 c ] = 0 [ f u α i 1 f u α i 2 f u α i 3 f u α i 4 0 0 0 0 ( u c − u i ) α i 1 ( u c − u i ) α i 2 ( u c − u i ) α i 3 ( u c − u i ) α i 4 0 0 0 0 f v α i 1 f v α i 2 f v α i 3 f v α i 4 ( v c − v i ) α i 1 ( v c − v i ) α i 2 ( v c − v i ) α i 3 ( v c − v i ) α i 4 ] [ C x 1 c C x 2 c C x 3 c C x 4 c C y 1 c C y 2 c C y 3 c C y 4 c C z 1 c C z 2 c C z 3 c C z 4 c ] = 0 f_u \begin{bmatrix} \alpha_{i1} & \alpha_{i2} & \alpha_{i3} & \alpha_{i4} \end{bmatrix}\begin{bmatrix} C_{x1}^c \\ C_{x2}^c \\ C_{x3}^c \\ C_{x4}^c\end{bmatrix} + (u_c-u_i) \begin{bmatrix} \alpha_{i1} & \alpha_{i2} & \alpha_{i3} & \alpha_{i4} \end{bmatrix} \begin{bmatrix} C_{z1}^c \\ C_{z2}^c \\ C_{z3}^c \\ C_{z4}^c\end{bmatrix} =0 \\ f_v \begin{bmatrix} \alpha_{i1} & \alpha_{i2} & \alpha_{i3} & \alpha_{i4} \end{bmatrix}\begin{bmatrix} C_{y1}^c \\ C_{y2}^c \\ C_{y3}^c \\ C_{y4}^c\end{bmatrix} + (v_c-v_i) \begin{bmatrix} \alpha_{i1} & \alpha_{i2} & \alpha_{i3} & \alpha_{i4} \end{bmatrix} \begin{bmatrix} C_{z1}^c \\ C_{z2}^c \\ C_{z3}^c \\ C_{z4}^c\end{bmatrix} =0 \\\\\\ \begin{bmatrix} f_u\alpha_{i1} & f_u\alpha_{i2} & f_u\alpha_{i3} & f_u\alpha_{i4} &0&0&0&0&(u_c-u_i) \alpha_{i1} & (u_c-u_i) \alpha_{i2} & (u_c-u_i) \alpha_{i3} & (u_c-u_i) \alpha_{i4} \\0&0&0&0&f_v\alpha_{i1} & f_v\alpha_{i2} & f_v\alpha_{i3} & f_v\alpha_{i4}& (v_c-v_i) \alpha_{i1} & (v_c-v_i) \alpha_{i2} & (v_c-v_i) \alpha_{i3} & (v_c-v_i) \alpha_{i4} \end{bmatrix}\begin{bmatrix}C_{x1}^c \\ C_{x2}^c \\ C_{x3}^c \\ C_{x4}^c\\C_{y1}^c \\ C_{y2}^c \\ C_{y3}^c \\ C_{y4}^c \\ C_{z1}^c \\ C_{z2}^c \\ C_{z3}^c \\ C_{z4}^c\end{bmatrix} =0 fu[αi1αi2αi3αi4] Cx1cCx2cCx3cCx4c +(ucui)[αi1αi2αi3αi4] Cz1cCz2cCz3cCz4c =0fv[αi1αi2αi3αi4] Cy1cCy2cCy3cCy4c +(vcvi)[αi1αi2αi3αi4] Cz1cCz2cCz3cCz4c =0[fuαi10fuαi20fuαi30fuαi400fvαi10fvαi20fvαi30fvαi4(ucui)αi1(vcvi)αi1(ucui)αi2(vcvi)αi2(ucui)αi3(vcvi)αi3(ucui)αi4(vcvi)αi4] Cx1cCx2cCx3cCx4cCy1cCy2cCy3cCy4cCz1cCz2cCz3cCz4c =0
找到相机坐标系下的控制点后,就能够求得相机外参:
C j c = R C j w + t [ C x j c C y j c C z j c ] = [ r 1 r 2 r 3 r 4 r 5 r 6 r 7 r 8 r 9 ] [ C x j w C y j w C z j w ] + [ t 1 t 2 t 3 ] C x j c = r 1 C x j w + r 2 C y j w + r 3 C z j w + t 1 C y j c = r 4 C x j w + r 5 C y j w + r 6 C z j w + t 2 C z j c = r 7 C x j w + r 8 C y j w + r 9 C z j w + t 3 [ C x 1 c C y 1 c C z 1 c C x 2 c C y 2 c C z 2 c C x 3 c C y 3 c C z 3 c C x 4 c C y 4 c C z 4 c ] = [ C x 1 w C y 1 w C z 1 w 0 0 0 0 0 0 1 0 0 0 0 0 C x 1 w C y 1 w C z 1 w 0 0 0 0 1 0 0 0 0 0 0 0 C x 1 w C y 1 w C z 1 w 0 0 1 C x 2 w C y 2 w C z 2 w 0 0 0 0 0 0 1 0 0 0 0 0 C x 2 w C y 2 w C z 2 w 0 0 0 0 1 0 0 0 0 0 0 0 C x 2 w C y 2 w C z 2 w 0 0 1 C x 3 w C y 3 w C z 3 w 0 0 0 0 0 0 1 0 0 0 0 0 C x 3 w C y 3 w C z 3 w 0 0 0 0 1 0 0 0 0 0 0 0 C x 3 w C y 3 w C z 3 w 0 0 1 C x 4 w C y 4 w C z 4 w 0 0 0 0 0 0 1 0 0 0 0 0 C x 4 w C y 4 w C z 4 w 0 0 0 0 1 0 0 0 0 0 0 0 C x 4 w C y 4 w C z 4 w 0 0 1 ] [ r 1 r 2 r 3 r 4 r 5 r 6 r 7 r 8 r 9 t 1 t 2 t 3 ] \begin{aligned} &C_j^c = RC_j^w+t\\\\ &\begin{bmatrix}C_{xj}^c \\ C_{yj}^c \\ C_{zj}^c \end{bmatrix} = \begin{bmatrix} r_1 & r_2 & r_3 \\ r_4 & r_5 & r_6 \\r_7 & r_8 & r_9 \end{bmatrix}\begin{bmatrix}C_{xj}^w \\ C_{yj}^w \\ C_{zj}^w \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \\ t_3\end{bmatrix} \\\\ &C_{xj}^c = r_1C_{xj}^w + r_2C_{yj}^w + r_3C_{zj}^w + t_1\\ &C_{yj}^c = r_4C_{xj}^w + r_5C_{yj}^w + r_6C_{zj}^w + t_2\\ &C_{zj}^c = r_7C_{xj}^w + r_8C_{yj}^w + r_9C_{zj}^w + t_3\\ \\\\ &\begin{bmatrix}C_{x1}^c \\ C_{y1}^c \\C_{z1}^c \\C_{x2}^c \\ C_{y2}^c \\C_{z2}^c \\C_{x3}^c \\ C_{y3}^c \\C_{z3}^c \\C_{x4}^c \\ C_{y4}^c \\C_{z4}^c\end{bmatrix} = \begin{bmatrix} C_{x1}^w & C_{y1}^w & C_{z1}^w&0&0&0&0&0&0&1&0&0 \\ 0&0&0&C_{x1}^w & C_{y1}^w & C_{z1}^w &0&0&0&0&1&0\\ 0&0&0&0&0&0& C_{x1}^w & C_{y1}^w & C_{z1}^w &0&0&1\\ C_{x2}^w & C_{y2}^w & C_{z2}^w&0&0&0&0&0&0&1&0&0 \\ 0&0&0&C_{x2}^w & C_{y2}^w & C_{z2}^w &0&0&0&0&1&0\\ 0&0&0&0&0&0& C_{x2}^w & C_{y2}^w & C_{z2}^w &0&0&1 \\ C_{x3}^w & C_{y3}^w & C_{z3}^w&0&0&0&0&0&0&1&0&0 \\ 0&0&0&C_{x3}^w & C_{y3}^w & C_{z3}^w &0&0&0&0&1&0\\ 0&0&0&0&0&0& C_{x3}^w & C_{y3}^w & C_{z3}^w &0&0&1\\ C_{x4}^w & C_{y4}^w & C_{z4}^w&0&0&0&0&0&0&1&0&0 \\ 0&0&0&C_{x4}^w & C_{y4}^w & C_{z4}^w &0&0&0&0&1&0\\ 0&0&0&0&0&0& C_{x4}^w & C_{y4}^w & C_{z4}^w &0&0&1 \end{bmatrix} \begin{bmatrix}r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \\ r_6 \\ r_7 \\ r_8 \\ r_9 \\t_1\\t_2\\t_3 \end{bmatrix} \end{aligned} Cjc=RCjw+t CxjcCyjcCzjc = r1r4r7r2r5r8r3r6r9 CxjwCyjwCzjw + t1t2t3 Cxjc=r1Cxjw+r2Cyjw+r3Czjw+t1Cyjc=r4Cxjw+r5Cyjw+r6Czjw+t2Czjc=r7Cxjw+r8Cyjw+r9Czjw+t3 Cx1cCy1cCz1cCx2cCy2cCz2cCx3cCy3cCz3cCx4cCy4cCz4c = Cx1w00Cx2w00Cx3w00Cx4w00Cy1w00Cy2w00Cy3w00Cy4w00Cz1w00Cz2w00Cz3w00Cz4w000Cx1w00Cx2w00Cx3w00Cx4w00Cy1w00Cy2w00Cy3w00Cy4w00Cz1w00Cz2w00Cz3w00Cz4w000Cx1w00Cx2w00Cx3w00Cx4w00Cy1w00Cy2w00Cy3w00Cy4w00Cz1w00Cz2w00Cz3w00Cz4w100100100100010010010010001001001001 r1r2r3r4r5r6r7r8r9t1t2t3

控制点选取

原则上,就是只要选择3个线性无关的点,就可以表示任意一个三维点,但由于方程组是4,如何是3个控制点只能求得最小二乘解。论文中给出了具体的选择方法。 3D参考点集为 { P i w , i = 1 , ⋯   , n } \left\{P^w_i,i=1,\cdots,n \right \} {Piw,i=1,,n}, 选择3D点的中心为第一个控制点:
C 1 w = 1 n ∑ i = 1 n P i w C^w_1=\frac{1}{n}\sum_{i=1}^nP^w_i C1w=n1i=1nPiw
进而得到矩阵:
A = [ ( P 1 w ) T − ( C 1 w ) T ⋯ ( P n w ) T − ( C n w ) T ] A=\begin{bmatrix}{(P_{1}^{w})}^{T} - {(C_{1}^{w})}^{T} \\ \cdots \\ {(P_{n}^{w})}^{T} - {(C_{n}^{w})}^{T} \end{bmatrix} A= (P1w)T(C1w)T(Pnw)T(Cnw)T
A T A A^TA ATA的特征值为 λ i \lambda_i λi, 特征向量为 V i V_i Vi ,那么剩下的三个点为:
C w = C 1 w + λ i 1 2 V i ,   i = 1 , 2 , 3 C^w = C_1^w +\lambda^{\frac{1}{2}}_iV_i,\ i = 1,2,3 Cw=C1w+λi21Vi, i=1,2,3

求解 α \alpha α

联立方程组:
P i w = α i 1 C 1 w + α i 2 C 2 w + α i 3 C 3 w + α i 4 C 4 w [ x i y i z i ] = α i 1 [ C x 1 w C y 1 w C z 1 w ] + α i 2 [ C x 2 w C y 2 w C z 2 w ] + α i 3 [ C x 3 w C y 3 w C z 3 w ] + α i 4 [ C x 4 w C y 4 w C z 4 w ] \begin{aligned} &P_i^w = \alpha_{i1}C_1^w+\alpha_{i2}C_2^w+\alpha_{i3}C_3^w+\alpha_{i4}C_4^w \\\\ &\begin{bmatrix} x_i \\y_i\\z_i\end{bmatrix} = \alpha_{i1}\begin{bmatrix} C_{x1}^w \\C_{y1}^w\\C_{z1}^w\end{bmatrix}+\alpha_{i2}\begin{bmatrix} C_{x2}^w \\C_{y2}^w\\C_{z2}^w\end{bmatrix}+\alpha_{i3}\begin{bmatrix} C_{x3}^w \\C_{y3}^w\\C_{z3}^w\end{bmatrix}+\alpha_{i4}\begin{bmatrix} C_{x4}^w \\C_{y4}^w\\C_{z4}^w\end{bmatrix} \end{aligned} Piw=αi1C1w+αi2C2w+αi3C3w+αi4C4w xiyizi =αi1 Cx1wCy1wCz1w +αi2 Cx2wCy2wCz2w +αi3 Cx3wCy3wCz3w +αi4 Cx4wCy4wCz4w
每个点可以得到4个方程组:
x i = α i 1 C x 1 w + α i 2 C x 2 w + α i 3 C x 3 w + α i 4 C x 4 w y i = α i 1 C y 1 w + α i 2 C y 2 w + α i 3 C y 3 w + α i 4 C y 4 w z i = α i 1 C z 1 w + α i 2 C z 2 w + α i 3 C z 3 w + α i 4 C z 4 w 1 = α i 1 + α i 2 + α i 3 + α i 4 x_i=\alpha_{i1}C_{x1}^w+\alpha_{i2}C_{x2}^w+\alpha_{i3}C_{x3}^w+\alpha_{i4}C_{x4}^w\\ y_i=\alpha_{i1}C_{y1}^w+\alpha_{i2}C_{y2}^w+\alpha_{i3}C_{y3}^w+\alpha_{i4}C_{y4}^w\\ z_i=\alpha_{i1}C_{z1}^w+\alpha_{i2}C_{z2}^w+\alpha_{i3}C_{z3}^w+\alpha_{i4}C_{z4}^w\\ 1= \alpha_{i1}+\alpha_{i2}+\alpha_{i3}+\alpha_{i4} xi=αi1Cx1w+αi2Cx2w+αi3Cx3w+αi4Cx4wyi=αi1Cy1w+αi2Cy2w+αi3Cy3w+αi4Cy4wzi=αi1Cz1w+αi2Cz2w+αi3Cz3w+αi4Cz4w1=αi1+αi2+αi3+αi4
用矩阵的方式可表示为:
[ x i y i z i 1 ] = [ C x 1 w C x 2 w C x 3 w C x 4 w C y 1 w C y 2 w C y 3 w C y 4 w C z 1 w C z 2 w C z 3 w C z 4 w 1 1 1 1 ] [ α i 1 α i 2 α i 3 α i 4 ] ⟶ [ C x 1 w C x 2 w C x 3 w C x 4 w C y 1 w C y 2 w C y 3 w C y 4 w C z 1 w C z 2 w C z 3 w C z 4 w 1 1 1 1 ] − 1 [ x i y i z i 1 ] = [ α i 1 α i 2 α i 3 α i 4 ] \begin{bmatrix} x_i \\ y_i \\ z_i \\ 1 \end{bmatrix} = \begin{bmatrix} C_{x1}^w &C_{x2}^w &C_{x3}^w &C_{x4}^w \\ C_{y1}^w &C_{y2}^w &C_{y3}^w &C_{y4}^w \\ C_{z1}^w &C_{z2}^w &C_{z3}^w &C_{z4}^w \\ 1&1&1&1 \end{bmatrix} \begin{bmatrix} \alpha_{i1} \\ \alpha_{i2} \\ \alpha_{i3} \\ \alpha_{i4}\end{bmatrix} \longrightarrow \begin{bmatrix} C_{x1}^w &C_{x2}^w &C_{x3}^w &C_{x4}^w \\ C_{y1}^w &C_{y2}^w &C_{y3}^w &C_{y4}^w \\ C_{z1}^w &C_{z2}^w &C_{z3}^w &C_{z4}^w \\ 1&1&1&1 \end{bmatrix} ^{-1}\begin{bmatrix} x_i \\ y_i \\ z_i \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_{i1} \\ \alpha_{i2} \\ \alpha_{i3} \\ \alpha_{i4}\end{bmatrix} xiyizi1 = Cx1wCy1wCz1w1Cx2wCy2wCz2w1Cx3wCy3wCz3w1Cx4wCy4wCz4w1 αi1αi2αi3αi4 Cx1wCy1wCz1w1Cx2wCy2wCz2w1Cx3wCy3wCz3w1Cx4wCy4wCz4w1 1 xiyizi1 = αi1αi2αi3αi4

C++代码实现:https://github.com/ldx-star/ePnP

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
多视图三维重建是一项非常复杂的任务,需要大量的计算资源和技术知识。在这里,我提供一个基于PyTorch和OpenCV的简单示例代码,它可以使用多张图像进行三维重建。 首先,我们需要导入必要的库: ```python import torch import torch.nn as nn import torch.optim as optim import cv2 import numpy as np ``` 然后,我们需要定义一个卷积神经网络模型来进行图像的特征提取和匹配。这里我们使用一个简单的卷积神经网络模型,包含两个卷积层和一个池化层: ```python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) return x ``` 接下来,我们需要定义一个三维重建的函数。首先,我们需要将所有图像输入到卷积神经网络模型中,提取出每张图像的特征。然后,我们使用OpenCV的SIFT算法进行特征匹配,找到每两张图像之间的匹配点。最后,我们使用EPnP算法进行三维重建,得到物体的三维坐标。 ```python def reconstruct_3d(images): # define the neural network model net = Net() net.eval() # load the pre-trained weights net.load_state_dict(torch.load('model.pth')) # extract features from all images features = [] for img in images: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = torch.from_numpy(img).float() / 255.0 img = img.permute(2, 0, 1).unsqueeze(0) with torch.no_grad(): feature = net(img) feature = feature.squeeze().numpy() features.append(feature) # match features between all image pairs matches = [] for i in range(len(images)): for j in range(i+1, len(images)): matcher = cv2.BFMatcher() kp1, des1 = cv2.SIFT_create().detectAndCompute(images[i], None) kp2, des2 = cv2.SIFT_create().detectAndCompute(images[j], None) matches_ij = matcher.knnMatch(des1, des2, k=2) good_matches = [] for m, n in matches_ij: if m.distance < 0.7 * n.distance: good_matches.append(m) matches.append((i, j, kp1, kp2, good_matches)) # reconstruct 3D coordinates of all points points_3d = [] for i in range(len(matches)): for j in range(i+1, len(matches)): if matches[i][0] == matches[j][0] or matches[i][0] == matches[j][1] or matches[i][1] == matches[j][0] or matches[i][1] == matches[j][1]: points_ij = [] for m in matches[i][4]: p1 = matches[i][2][m.queryIdx].pt p2 = matches[i][3][m.trainIdx].pt for n in matches[j][4]: if m.trainIdx == n.queryIdx: p3 = matches[j][3][n.trainIdx].pt point_3d = cv2.triangulatePoints(np.eye(3, 4), np.eye(3, 4), np.array([p1[0], p1[1], p2[0], p2[1]]).reshape((2, 2)).astype(np.float32), np.array([p3[0], p3[1], p2[0], p2[1]]).reshape((2, 2)).astype(np.float32)) point_3d = point_3d[:3] / point_3d[3] points_ij.append(point_3d.reshape((3,))) if len(points_ij) > 0: points_3d.append(np.mean(points_ij, axis=0)) return points_3d ``` 最后,我们可以使用这个函数来对多张图像进行三维重建。例如,我们可以读取三张图像并进行三维重建: ```python # read three images img1 = cv2.imread('image1.jpg') img2 = cv2.imread('image2.jpg') img3 = cv2.imread('image3.jpg') # reconstruct 3D coordinates points_3d = reconstruct_3d([img1, img2, img3]) # print the 3D coordinates print(points_3d) ``` 这个示例代码只是一个简单的演示,实际的三维重建需要更复杂的算法和更多的技术细节。如果你想要进行更深入的研究和实践,请参考相关文献和开源代码库。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值