命题
命题必须符合两个要求: 1、是陈述句 2、能够判断真假(可以不知道真假)
命题连接词
如下表:
否定
不用多说 P为真 非P就为假 反之同理
合取 “既...又...” “当且仅当”
如:小明既是大学生,也是运动员。
若小明不是大学生,也不是运动员,那么此命题自然是假!
析取 “或”(严格来说析取代表的是“同或”
蕴涵 P为前件 Q为后件
如:如果周末天气好,那么我们就去郊游
ps:当前件为假的时候,这个命题不太好判断,因为天气不好,那么你去不去郊游,都无法拿来判断“如果周末天气好,那么我们就去郊游”这句话的真假
所以我们规定,前件为假的时候,后件不管是啥,我们都说这个命题是真(这就是 善意推定)
ps:如果有犯罪证据,那么他就有罪。(如果没证据呢,那么无论他有没有罪,我们都认为他无罪,疑罪从无,善意推定)
等价 “当且仅当”
真值表总结:
联结词的优先级:
命题符号化
公式的解释
一个命题 P 我们不知道他是真还是假,所以称它为命题变元
假设一个命题公式包含n个命题变元
我们给每一个变元赋一个值:L1:P1 真 P2 假 P3 真 P4 假 .........那么L1就是命题公式的一个解释
一个命题公式有n个不同的命题变元,那么就有2的n次方个解释。
而公式G在所有可能的解释下所取得的真值,就是G的真值表。
命题公式分类:
如果一个公式在其所有解释下都为真,成为永真公式(重言式)
如果一个公式在其所有解释下都为假,成为永假公式(矛盾式)
一个公式,不是永假的,那就是可满足公式
(永假公式也叫不可满足公式)