离散数学--命题逻辑(一)

本文介绍了命题的基本概念,包括命题的定义、命题连接词及其使用场景,并详细解析了命题公式的分类和真值表等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

命题

命题必须符合两个要求:   1、是陈述句      2、能够判断真假(可以不知道真假)

命题连接词

如下表:

 

否定

不用多说   P为真 非P就为假   反之同理

合取  “既...又...”   “当且仅当”  

如:小明既是大学生,也是运动员。

若小明不是大学生,也不是运动员,那么此命题自然是假!

析取  “或”(严格来说析取代表的是“同或”

蕴涵  P为前件 Q为后件

如:如果周末天气好,那么我们就去郊游

ps:当前件为假的时候,这个命题不太好判断,因为天气不好,那么你去不去郊游,都无法拿来判断“如果周末天气好,那么我们就去郊游”这句话的真假

所以我们规定,前件为假的时候,后件不管是啥,我们都说这个命题是真(这就是 善意推定)

ps:如果有犯罪证据,那么他就有罪。(如果没证据呢,那么无论他有没有罪,我们都认为他无罪,疑罪从无,善意推定)

 

 

等价  “当且仅当”

 

真值表总结:

联结词的优先级:

命题符号化

公式的解释

一个命题 P  我们不知道他是真还是假,所以称它为命题变元

假设一个命题公式包含n个命题变元

我们给每一个变元赋一个值:L1:P1 真  P2 假  P3 真  P4 假 .........那么L1就是命题公式的一个解释

一个命题公式有n个不同的命题变元,那么就有2的n次方个解释。

而公式G在所有可能的解释下所取得的真值,就是G的真值表。

 

命题公式分类:

如果一个公式在其所有解释下都为真,成为永真公式(重言式)

如果一个公式在其所有解释下都为假,成为永假公式(矛盾式)

一个公式,不是永假的,那就是可满足公式

(永假公式也叫不可满足公式)

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

1900_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值