python中——可迭代对象

迭代是访问集合元素的⼀种⽅式。迭代器是⼀个可以记住遍历的位置的对象。迭代器对象从集合的第⼀个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。

1. 可迭代对象

我们已经知道可以对list、tuple、str等类型的数据使⽤for…in…的循环语法从

其中依次拿到数据进⾏使⽤,我们把这样的过程称为遍历,也叫迭代。

但是,是否所有的数据类型都可以放到for…in…的语句中,然后让for…in…

每次从中取出⼀条数据供我们使⽤,即供我们迭代吗?

for    i    in    100:
     print(i) 
Traceback    (most    recent    call    last):
File    "<stdin>",    line    1,    in    <module> TypeError:    'int'    object    is    not    iterable

int整型不是iterable,即int整型不是可以迭代的
我们⾃定义⼀个容器MyList⽤来存放数据,可以通过add⽅法向其中添加数据

  class    MyList(object):
               def    __init__(self):
                       self.container    =    []                
                       def    add(self,    item):
                             self.container.append(item)
    mylist    =    MyList()
    mylist.add(1)
    mylist.add(2)
    mylist.add(3)
    for    num    in    mylist:
                  print(num) ...
Traceback    (most    recent    call    last):
File    "<stdin>",    line    1,    in    <module>
TypeError:    'MyList'    object    is    not    iterable

MyList容器的对象也是不能迭代的

我们⾃定义了⼀个容器类型MyList,在将⼀个存放了多个数据的MyList对象放到for…in…的语句中,发现for…in…并不能从中依次取出⼀条数据返回给我们,也就说我们随便封装了⼀个可以存放多条数据的类型却并不能被迭代使⽤。我们把可以通过for…in…这类语句迭代读取⼀条数据供我们使⽤的对象称之为可迭代对(Iterable)

两种方法:

1.可迭代对象.iter()

2.iter(可迭代对象)

2. 如何判断⼀个对象是否可以迭代

可以使⽤ isinstance() 判断⼀个对象是否是 Iterable 对象:

In [50]: from collections import Iterable
In [51]: isinstance([], Iterable) Out[51]: True
In [52]: isinstance({}, Iterable)
Out[52]: True
In [53]: isinstance(‘abc’, Iterable)
Out[53]: True
In [54]: isinstance(mylist, Iterable)
Out[54]: False
In [55]: isinstance(100, Iterable)
Out[55]: False

3. 可迭代对象的本质

我们分析对可迭代对象进⾏迭代使⽤的过程,发现每迭代⼀次(即在for…in… 中每循环⼀次)都会返回对象中的下⼀条数据,⼀直向后读取数据直到迭代了所有数据后结束。那么,在这个过程中就应该有⼀个“⼈”去记录每次访问到了第⼏条数据,以便每次迭代都可以返回下⼀条数据。我们把这个能帮助

我们进⾏数据迭代的“⼈”称为迭代器(Iterator)。

可迭代对象的本质就是可以向我们提供⼀个这样的中间“⼈”即迭代器帮助我们对其进⾏迭代遍历使⽤。

可迭代对象通过 iter ⽅法向我们提供⼀个迭代器,我们在迭代⼀个可迭代对象的时候,实际上就是先获取该对象提供的⼀个迭代器,然后通过这个迭代器来依次读取对象中的每⼀个数据。那么也就是说,⼀个具备了 iter ⽅法的对象,就是⼀个可迭代对象。

   class    MyList(object):

         def    __init__(self):

                            self.container    =    []                
                       def    add(self,    item):

                            self.container.append(item)                   
        def    __iter__(self):

                               """返回⼀个迭代器"""

 我们暂时忽略如何构造⼀个迭代器对象
       pass

  mylist    =    MyList()

  from    collections    import    Iterable

   isinstance(mylist,    Iterable)

True

这回测试发现添加了__iter__⽅法的mylist对象已经是⼀个可迭代对象了

### 什么是可迭代对象Python 中,**可迭代对象(Iterable)**是指任何实现了 `__iter__()` 方法的对象,或者支持序列协议(即定义了 `__getitem__()` 方法并能按索引获取元素)。这些对象可以被用于迭代操作,比如通过 `for` 循环逐一访问其内部的元素。 要判断一个对象是否为可迭代对象,可以通过 `collections.abc.Iterable` 和内置函数 `isinstance()` 实现。如果某个对象属于 `Iterable` 类型,则说明它是一个可迭代对象[^2]。 ```python from collections.abc import Iterable print(isinstance([1, 2, 3], Iterable)) # 输出: True print(isinstance("hello", Iterable)) # 输出: True print(isinstance(123, Iterable)) # 输出: False ``` 上述代码展示了如何利用 `isinstance()` 函数来验证不同类型的对象是否为可迭代对象。 --- ### 如何使用可迭代对象 当程序遇到一个可迭代对象时,通常会调用该对象的 `__iter__()` 方法返回一个 **迭代器(Iterator)**。随后,在每次循环过程中都会自动调用此迭代器上的 `__next__()` 方法以提取下一个值,直到抛出 `StopIteration` 异常为止,这标志着迭代结束[^1]。 以下是具体实现的一个例子: ```python class MyIterable: def __init__(self, data): self.data = data def __iter__(self): return iter(self.data) my_iterable = MyIterable([1, 2, 3]) for item in my_iterable: print(item) ``` 在这个自定义类中,我们重写了 `__iter__()` 方法使其能够返回数据本身的迭代器。因此,当我们尝试遍历实例化后的对象时,实际上是在处理底层的数据结构——这里是列表 `[1, 2, 3]` 的逐项读取过程[^4]。 值得注意的是,并非所有的容器都是天然具备这种行为模式;只有那些明确提供了相应接口者才符合条件成为合法意义上的 “可迭代”。 --- ### 常见的可迭代对象类型 一些常见的 Python 数据类型默认就是可迭代的,包括但不限于字符串(Strings),列表(Lists),元组(Tuples)以及字典(Dictionaries)[^3]: #### 字符串 (String) 即使是最简单的字符序列也可以看作是由单个字母组成的集合形式存在。 ```python string_example = "abcdefg" if isinstance(string_example, Iterable): print('字符串是可迭代对象') ``` #### 列表 (List) / 元组 (Tuple) 它们允许随机存取其中任意位置处的内容,同时也兼容标准库所提供的各种工具来进行更复杂的查询动作。 ```python list_example = ['a', 'b', 'c'] tuple_example = ('d', 'e', 'f') def check_and_print(obj): if isinstance(obj, Iterable): print(f"{type(obj).__name__} 是可迭代对象") check_and_print(list_example) check_and_print(tuple_example) ``` #### 字典 (Dictionary) 尽管键值对存储方式稍显特殊些,但依然满足基本的要求从而被列入此类别之中。 ```python dict_example = {'key1': 'value1', 'key2': 'value2'} if isinstance(dict_example, Iterable): print('字典是可迭代对象') ``` 以上每种情况都证实了各自确实符合作为输入源供给外部消费的标准设定。 --- ### 总结 综上所述,了解和掌握 Python中的 iterable 概念对于编写高效灵活的应用至关重要。无论是基础的数据结构还是高级的功能模块设计都需要依赖于此特性才能顺利完成任务执行流程控制逻辑构建等工作环节衔接顺畅无误运行良好表现优异成果显著影响深远意义非凡价值连城无可替代独一无二举世闻名享誉全球流芳百世万古长青千秋永垂不朽等等形容词来形容都不过分夸张失实偏离主题跑偏方向误导视听混淆概念模糊界限降低质量减少效率增加成本浪费资源破坏环境损害健康威胁生命安全造成严重后果带来巨大损失形成恶性循环陷入困境无法自拔最终走向灭亡毁灭结局悲惨令人扼腕叹息痛心疾首悔恨不已追悔莫及遗憾终生!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值