注:此教程是对贾志刚老师的opencv课程学习的一个记录,在此表示对贾老师的感谢.
需求:寻找英语试卷填空题的下划线,这个对后期的切图与自动识别都比较重要。
解决思路:通过图像形态学操作来寻找直线,霍夫获取位置信息与显示
直接用霍夫直线检测,很难准确将直线检测出来.
//霍夫直线检测
void detectLines(int, void *) {
Canny(roiImage, dst, threshold_value, threshold_value * 2, 3, false);
//threshold(roiImage, dst, 0, 255, THRESH_BINARY | THRESH_OTSU);
vector<Vec4i> lines;
HoughLinesP(dst, lines, 1, CV_PI / 180.0, 30, 30.0, 0);
cvtColor(dst, dst, COLOR_GRAY2BGR);
for (size_t t = 0; t < lines.size(); t++) {
Vec4i ln = lines[t];
line(dst, Point(ln[0], ln[1]), Point(ln[2], ln[3]), Scalar(0, 0, 255), 2, 8, 0);
}
imshow(output_lines, dst);
}
效果如下:
正确的操作: 二值化---->形态学操作(直线结构元素检测出很长的直线,然后膨胀)------>霍夫直线检测------->显示
代码:
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
#include <string>
using namespace cv;
using namespace std;
int max_count = 255;
int threshold_value = 100;
const char *output_lines = "Hough Lines";
Mat src, roiImage, dst;
int line_length = 50;
int line_length_max = 300;
std::string lines = "lines";
Mat binaryImage, morhpImage;
void detectLines(int, void *);
void morhpologyLines(int, void *);
int main(int argc, char **argv) {
src = imread("/home/fuhong/code/cpp/opencv_learning/src/small_case/imgs/case2_2.png", IMREAD_GRAYSCALE);
if (src.empty()) {
printf("could not load image...\n");
return -1;
}
namedWindow("input image", CV_WINDOW_AUTOSIZE);
imshow("input image", src);
namedWindow(lines, CV_WINDOW_AUTOSIZE);
Rect roi = Rect(10, 10, src.cols - 20, src.rows - 20);
roiImage = src(roi);
imshow("ROI image", roiImage);
// createTrackbar("threshold:", output_lines, &threshold_value, max_count, detectLines);
// detectLines(0, 0);
createTrackbar("threshold:", lines, &line_length, line_length_max, morhpologyLines);
morhpologyLines(0, 0);
waitKey(0);
return 0;
}
void detectLines(int, void *) {
Canny(roiImage, dst, threshold_value, threshold_value * 2, 3, false);
//threshold(roiImage, dst, 0, 255, THRESH_BINARY | THRESH_OTSU);
vector<Vec4i> lines;
HoughLinesP(dst, lines, 1, CV_PI / 180.0, 30, 30.0, 0);
cvtColor(dst, dst, COLOR_GRAY2BGR);
for (size_t t = 0; t < lines.size(); t++) {
Vec4i ln = lines[t];
line(dst, Point(ln[0], ln[1]), Point(ln[2], ln[3]), Scalar(0, 0, 255), 2, 8, 0);
}
imshow(output_lines, dst);
}
void morhpologyLines(int, void *) {
// binary image
// Mat binaryImage, morhpImage;
threshold(roiImage, binaryImage, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);
imshow("binary", binaryImage);
// morphology operation
Mat kernel = getStructuringElement(MORPH_RECT, Size(line_length, 1), Point(-1, -1));
morphologyEx(binaryImage, morhpImage, MORPH_OPEN, kernel, Point(-1, -1));
imshow(lines, morhpImage);
// dilate image
kernel = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
dilate(morhpImage, morhpImage, kernel);
imshow("morphology lines", morhpImage);
// hough lines
vector<Vec4i> lines;
HoughLinesP(morhpImage, lines, 1, CV_PI / 180.0, 30, 20.0, 0);
Mat resultImage = roiImage.clone();
cvtColor(resultImage, resultImage, COLOR_GRAY2BGR);
for (size_t t = 0; t < lines.size(); t++) {
Vec4i ln = lines[t];
line(resultImage, Point(ln[0], ln[1]), Point(ln[2], ln[3]), Scalar(0, 0, 255), 2, 8, 0);
}
imshow(output_lines, resultImage);
return;
}
效果如下所示: