[size=medium]做一件事,完成它需要分成n个步骤,做第一 步有m1种不同的方法,做第二步有m2不同的方法,……,做第n步有mn不同的方法。那么完成这件事共有 N=m1m2m3…mn 种不同的方法。 和加法原理是数学概率方面的基本原理。
数学描述
令S是元素的序偶(a,b),其中第一个元素a来自大小为p的一个集合,而对于a的每个选择,元素b存在q种选择。于是,S的大小为p×q,即|S|=p×q。乘法原理的第二种形式是:如果第一项任务有p个结果,而不论第一项任务的结果如何,第二项任务有q个结果,那么,这两项任务连续执行就有p×q个结果。
编辑本段证明
乘法原理是加法原理的一个推论,令a1,a2,…,ap是对元素a的p个不同的选择。将S划分成部分S1,S2,…,Sp,其中Si是S内第一个元素为ai(i=1,2,…,p)的有序偶的集合。每个Si的大小为q,因此由加法有|S|=|S1|+|S2|+…+|Sp|=q+q+…+q(p个q)=p×q
上述推导用到了整数的乘法就是重复的加法这一事实。
[/size]
这是乘法原理,排列的n!基础···
数学描述
令S是元素的序偶(a,b),其中第一个元素a来自大小为p的一个集合,而对于a的每个选择,元素b存在q种选择。于是,S的大小为p×q,即|S|=p×q。乘法原理的第二种形式是:如果第一项任务有p个结果,而不论第一项任务的结果如何,第二项任务有q个结果,那么,这两项任务连续执行就有p×q个结果。
编辑本段证明
乘法原理是加法原理的一个推论,令a1,a2,…,ap是对元素a的p个不同的选择。将S划分成部分S1,S2,…,Sp,其中Si是S内第一个元素为ai(i=1,2,…,p)的有序偶的集合。每个Si的大小为q,因此由加法有|S|=|S1|+|S2|+…+|Sp|=q+q+…+q(p个q)=p×q
上述推导用到了整数的乘法就是重复的加法这一事实。
[/size]
这是乘法原理,排列的n!基础···