3.3.1 整体规划
推进智能型企业全局规划,实现AI相关资源的科学有序整合,是企业侧释放AI价值的先决条件,也是企业级智算中心构建 的关键第一步。自上而下的整体规划,将体系化梳理现有AI基础资源(AI底层能力、AI系统平台等),多元化呈现企业的 AI场景需求,是高效建成企业AI能力与扎实推进AI应用赋能的重要驱动。整体规划以要素资源布局以及AI与业务融合为核 心。对于AI基础要素,整体规划需要对数据资源互通、智算设施建设、AI算法平台系统级扩展进行针对性的规划设计。对 于AI与业务融合,整体规划需将智能化发展思想融入到企业整体的业务规划当中,对AI技术布局以及未来发展有一定的理 解和判断,并具备前瞻性布局的能力。
从推进步骤看,整体规划可分为现状识别、蓝图设计、路径规划、资源支持等工作。第一步,现状识别。通过全方位调研 企业智能化渗透程度,依托智能型企业评估模型来对企业的智能化现状进行评估识别,摸清企业AI发展需求。第二步,蓝 图设计。通过具象化未来愿景为企业设计蓝图,设立AI战略愿景,从技术底座、场景应用、持续运营三个层面描绘未来蓝 图远景。第三步,路径规划。制定基于企业级智算中心的AI发展路线图,明确各阶段关键里程碑和成果评估指标。第四 步,资源支持。要协调资源的支持,通过组织、人才等资源配置支持,为整个工作提供保障。
3.3.2 平台建设
平台是企业侧AI能力的承载体,是企业统筹推进AI资源布局管理的关键工具,平台建设是企业级智算中心的核心。平台建 设致力于打通智算资源、样本中心、模型中心、AI开发平台,建设具有统一的模型及计算资源纳管、模型训练和部署运行 环境、企业级模型仓库和开放能力服务等功能的AI基础服务平台,提供面向企业AI模型开发全生命周期的解决方案,形成 企业内部AI应用开发新范式,提高模型研发运营的自动化水平并助力模型标准化,为数据智能应用创新提供企业级平台支 撑。
从推进步骤看,平台建设可分为调研模型需求、摸底现状、体系化建设等工作。第一步,调研AI应用需求。研判企业核心 业务智能化发展趋势,归总各业务AI应用的建设及引入计划,明确AI应用背后对AI模型的整体需求,并围绕数据准备、数 据清洗、模型设计、模型调优、模型部署等模型研发流程,进一步细化智能算力需求、AI数据集需求以及AI开发平台需 求。第二步,摸底现有AI资源。准确掌握当前企业侧AI三要素设施资源,以及研发平台、运维平台资源,为下一步实现平 台的协作与整合奠定基础。第三步,体系化推进AI基建平台建设。制定企业侧AI平台整体架构,明确AI平台不同模块的主 任责任方,以及不同板块AI平台技术、功能、目标等。
3.3.3 持续运营
持续运营,是将AI能力广泛应用到企业经营管理、业务运营的诸多场景,打通AI落地应用的“最后一公里”,让AI真正内 化为企业价值创造的血液,是企业级智算中心的关键保障。业务导向是企业级智算中心运营的关键原则,需要通过持续运 营,打通业务团队、内部管理团队、技术团队等多个组织。企业应培养适配新需求的AI人才,建设促进业务与技术融合的 运营管理机制,通过AI能力的内化实现AI能力的外化。
从推进步骤看,持续运营可分为建立常态化机制、支撑场景应用开发、推进AI人才培养以及生态联合运营等工作。第一 步,建立常态化运营管理机制。重点确立模型生产管理规划、模型服务管理规范、运维保障规范等,形成模型开发、管 理、运行的标准与机制,支撑日常运营。第二步,支撑场景应用开发。通过构建业务导向的AI业务赋能平台,提供AI创新 服务和解决方案,帮助业务方开发适用于具体业务场景的模型和应用,拓展业务方的AI认知宽度和应用深度。第三步,推 进AI人才培养。通过搭建企业内部AI学习平台,以及建立持续成长的AI培养成长机制,提升全员的智能化意识和能力,建 设企业AI人才梯队。第四步,开展生态联合运营。通过联合生态合作伙伴,共建AI创新实验室/创新中心等平台,推动行业 模型、行业大模型和应用的创新共享,打造开放共享的生态联合运营模式。