广告电商等推荐算法中,评估模型质量的指标,目前用的较多的有:AUC,NE, Bias.
AUC(area under curve): 名字曲线下面积,曲线指的的是ROC曲线,ROC曲线如下图(a)所示,其中横坐标是假正率(负样本预测为正的比率),纵坐标是真正率(正样本预测为正的比率),很显然,假正率越低同时真正率越高的越好。但这些比率和分类阈值有关,相关比率曲线如图(b),阈值取得越低,更多的样本被预测为正,真正率将会很高,但假正率也增高;反之阈值过高,假正率会很低,但真正率也会变低。我们尽量希望假正率低且虚警率高,所以曲线应该尽可能低靠近左上角。
在推荐算法中,我们不太关心阈值怎么取的问题,因为我们只需要对全部item进行打分并排序就够了,排在前面的N个(N由业务需求决定)推荐给用户。如果在分类问题中,需要制定一个阈值,一般来说,我们会选择一个比较折中的阈值,在图(a)的equal error rate位置,这个位置是左上角到右下角连线与ROC曲线的交点,这时候假正率和假负率相等,认为比较平衡。
AUC是曲线下面积,这个值越接近1,表面曲线越靠近左上角,认为模型性能越好。