推荐算法中模型评估标准——AUC和 NE

广告电商等推荐算法中,评估模型质量的指标,目前用的较多的有:AUC,NE, Bias.

AUC(area under curve):  名字曲线下面积,曲线指的的是ROC曲线,ROC曲线如下图(a)所示,其中横坐标是假正率(负样本预测为正的比率),纵坐标是真正率(正样本预测为正的比率),很显然,假正率越低同时真正率越高的越好。但这些比率和分类阈值有关,相关比率曲线如图(b),阈值取得越低,更多的样本被预测为正,真正率将会很高,但假正率也增高;反之阈值过高,假正率会很低,但真正率也会变低。我们尽量希望假正率低且虚警率高,所以曲线应该尽可能低靠近左上角。

在推荐算法中,我们不太关心阈值怎么取的问题,因为我们只需要对全部item进行打分并排序就够了,排在前面的N个(N由业务需求决定)推荐给用户。如果在分类问题中,需要制定一个阈值,一般来说,我们会选择一个比较折中的阈值,在图(a)的equal error rate位置,这个位置是左上角到右下角连线与ROC曲线的交点,这时候假正率和假负率相等,认为比较平衡。

AUC是曲线下面积,这个值越接近1,表面曲线越靠近左上角,认为模型性能越好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值