常微分方程的数值解法
常微分方程的数值解法
无比机智的永哥
看一遍,学一遍,不如动手写一遍。
Don't talk too much, show me the code.
展开
-
[常微分方程的数值解法系列五] 龙格-库塔(RK4)法
龙格-库塔法简介在惯性导航以及VIO等实际问题中利用IMU求解位姿需要对IMU测量值进行积分得到需要的位置和姿态,其中主要就是求解微分方程。但之前求解微分方程的解析方法主要是应用于一些简单和特殊的微分方程求解中,对于一般形式的微分方程,一般很难用解析方法求出精确解,只能用数值方法求解。该系列主要介绍一些常用的常微分方程的数值解法,主要包括:[常微分方程的数值解法系列一] 常微分方程[常微分方程的数值解法系列二] 欧拉法[常微分方程的数值解法系列三] 中值法[常微分方程的数值解法系列四] 龙格-库原创 2020-12-12 20:52:59 · 11846 阅读 · 1 评论 -
[常微分方程的数值解法系列四] 中值法
中值法简介在惯性导航以及VIO等实际问题中利用IMU求解位姿需要对IMU测量值进行积分得到需要的位置和姿态,其中主要就是求解微分方程。但之前求解微分方程的解析方法主要是应用于一些简单和特殊的微分方程求解中,对于一般形式的微分方程,一般很难用解析方法求出精确解,只能用数值方法求解。该系列主要介绍一些常用的常微分方程的数值解法,主要包括:[常微分方程的数值解法系列一] 常微分方程[常微分方程的数值解法系列二] 欧拉法[常微分方程的数值解法系列三] 中值法[常微分方程的数值解法系列四] 龙格-库塔(R原创 2020-12-09 23:43:37 · 2128 阅读 · 1 评论 -
[常微分方程的数值解法系列三] 改进欧拉法(预估校正法)
改进欧拉法简介预估-校正截断误差例子在惯性导航以及VIO等实际问题中利用IMU求解位姿需要对IMU测量值进行积分得到需要的位置和姿态,其中主要就是求解微分方程。但之前求解微分方程的解析方法主要是应用于一些简单和特殊的微分方程求解中,对于一般形式的微分方程,一般很难用解析方法求出精确解,只能用数值方法求解。该系列主要介绍一些常用的常微分方程的数值解法,主要包括:[常微分方程的数值解法系列一] 常微分方程[常微分方程的数值解法系列二] 欧拉法[常微分方程的数值解法系列三] 改进欧拉法(预估校正法)[原创 2020-12-09 00:19:09 · 19039 阅读 · 1 评论 -
[常微分方程的数值解法系列二] 欧拉法
欧拉法简介几何意义证明泰勒展开近似求导近似积分近似几种欧拉方式向前欧拉公式向后欧拉公式梯形公式改进欧拉法截断误差求解过程向前欧拉公式例子向前欧拉公式在惯性导航以及VIO等实际问题中利用IMU求解位姿需要对IMU测量值进行积分得到需要的位置和姿态,其中主要就是求解微分方程。但之前求解微分方程的解析方法主要是应用于一些简单和特殊的微分方程求解中,对于一般形式的微分方程,一般很难用解析方法求出精确解,只能用数值方法求解。该系列主要介绍一些常用的常微分方程的数值解法,主要包括:[常微分方程的数值解法系列一]原创 2020-12-06 23:10:31 · 6736 阅读 · 0 评论 -
[常微分方程的数值解法系列一] 常微分方程
欧拉法简介误差例子在惯性导航以及VIO等实际问题中利用IMU求解位姿需要对IMU测量值进行积分得到需要的位置和姿态,其中主要就是求解微分方程。但之前求解微分方程的解析方法主要是应用于一些简单和特殊的微分方程求解中,对于一般形式的微分方程,一般很难用解析方法求出精确解,只能用数值方法求解。而在具体求解微分方程中,一般来说是条件是KaTeX parse error: Undefined control sequence: \leqb at position 75: …\quad a \leq t \̲l̲e原创 2020-12-06 12:12:19 · 2388 阅读 · 1 评论