[矩阵的QR分解系列四] QR(正交三角)分解

之前介绍的矩阵的三角分解系列介绍了利用矩阵初等变换解决了矩阵三角化问题以及具体的三角分解。但是以初等变换工具的三角分解方法并不能消除病态线性方程组不稳定问题,而且有时候对于可逆矩阵有可能也不存在三角分解。所以后面为了解决这里问题,发展出来了以正交(酉)变换的矩阵的QR(正交三角)分解,矩阵的正交三角分解是一种对任何可逆矩阵均存在理想分解。进行QR分解需要用到施密特(Schmidt)正交规范化,吉文斯(Givens)变换和豪斯霍尔德(Householder)变换等。这里矩阵的QR分解系列教程主要是针对在学习QR分解时候的涉及到的一些细节,包括很多方法的来源和证明等,以及其中用到的一些矩阵操作的基础知识,主要包括:

这个系列后面文章会用到前面文章的理论和技术,所以建议按照顺序查看。

简介

之前介绍的矩阵的三角分解系列介绍了利用矩阵初等变换解决了矩阵三角化问题以及具体的三角分解。但是以初等变换工具的三角分解方法并不能消除病态线性方程组不稳定问题,而且有时候对于可逆矩阵有可能也不存在三角分解。所以后面为了解决这里问题,发展出来了以正交(酉)变换的矩阵的QR(正交三角)分解,矩阵的正交三角分解是一种对任何可逆矩阵均存在理想分解。这篇主要介绍QR分解的相关内容以及求解的具体过程。

QR分解

定义

非奇异矩阵 A \boldsymbol{A} A Q R \boldsymbol{Q R} QR分解式为
A = Q R , (1) \boldsymbol{A = Q R}, \tag{1} A=QR,(1)
其中 Q \boldsymbol{Q} Q是正交矩阵, R \boldsymbol{R} R是非奇异上三角矩阵。

存在和唯一性

定理1
对于任意 n n n阶非奇异矩阵 A \boldsymbol{A} A可以分解成正交矩阵 Q \boldsymbol{Q} Q和非奇异上三角矩阵 R \boldsymbol{R} R的乘积,且除去相差一个对角线元素之绝对值全等于1的对角矩阵因子 D \boldsymbol{D} D外,公式 ( 1 ) (1) (1)是唯一的。

存在性证明

假设 A \boldsymbol{A} A的各个列向量为 α 1 , α 2 , ⋯   , α n \boldsymbol{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,,αn,由于 A \boldsymbol{A} A非奇异,所以 α 1 , α 2 , ⋯   , α n \boldsymbol{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,,αn线性无关。将它们按照[矩阵的QR分解系列一] 施密特(Schmidt)正交规范化得到 n n n 个标准正交的向量 β 1 , β 2 , ⋯   , β n \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{n} β1,β2,,βn,得到
{ β 1 = b 11 α 1 β 2 = b 12 α 1 + b 22 α 2 ⋮ β n = b 1 n α 1 + b 2 n α 2 + ⋯ + b n n α n \left\{ \begin{aligned} \boldsymbol{\beta}_{1}&=b_{11} \boldsymbol{\alpha}_{1} \\ \boldsymbol{\beta}_{2}&=b_{12} \boldsymbol{\alpha}_{1}+b_{22} \boldsymbol{\alpha}_{2} \\ \vdots \\ \boldsymbol{\beta}_{n}&=b_{1 n} \boldsymbol{\alpha}_{1}+b_{2_{n}} \boldsymbol{\alpha}_{2}+\cdots+b_{n n} \boldsymbol{\alpha}_{n} \end{aligned} \right. β1β2βn=b11α1=b12α1+b22α2=b1nα1+b2nα2++bnnαn
这里 b i j b_{i j} bij都是常数,且正交化过程得知 b i i ≠ 0 ( i = 1 , 2 , ⋯   , n ) b_{i i} \neq 0(i=1,2, \cdots, n) bii=0(i=1,2,,n)。写成矩阵形式有
( β 1 , β 2 , ⋯   , β n ) = ( α 1 , α 2 , ⋯   , α n ) B , \left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{n}\right)=\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n}\right) \boldsymbol{B}, (β1,β2,,βn)=(α1,α2,,αn)B

Q = A B \boldsymbol{Q=A B} Q=AB
其中
B = [ b 11 b 12 ⋯ b 1 n b 22 ⋯ b 2 n ⋱ ⋮ b n n ] \boldsymbol{B}= \left[\begin{matrix} b_{11} & b_{12} & \cdots & b_{1 n} \\ & b_{22} & \cdots & b_{2 n} \\ & & \ddots & \vdots \\ & & & b_{n n} \end{matrix}\right] B=b11b12b22b1nb2nbnn
是上三角矩阵 ( b i i ≠ 0 ( i = 1 , 2 , ⋯   , n ) ) \left(b_{i i} \neq 0(i=1,2, \cdots, n)\right) (bii=0(i=1,2,,n))。显然 B \boldsymbol{B} B可逆,而且 B − 1 = R \boldsymbol{B^{-1}=R} B1=R也是上三角矩阵,由于 Q \boldsymbol{Q} Q的各列标准正交,所以 Q \boldsymbol{Q} Q为正交矩阵。
从而有 A = Q R \boldsymbol{A=Q R} A=QR

存在性证明完毕!!!!

唯一性证明

假设 A \boldsymbol{A} A有如下两种 Q R \boldsymbol{Q R} QR分解式:
A = Q R = Q 1 R 1 , (2) \boldsymbol{A=Q R=Q_1 R_1}, \tag{2} A=QR=Q1R1,(2)
其中 Q \boldsymbol{Q} Q Q 1 \boldsymbol{Q_1} Q1都是正交矩阵, R \boldsymbol{R} R R 1 \boldsymbol{R_1} R1都是非奇异上三角矩阵,得
Q = Q 1 R 1 R − 1 = Q 1 D , \boldsymbol{Q = Q_1 R_1 R^{-1} = Q_1 D}, Q=Q1R1R1=Q1D,
式中 D = R 1 R − 1 \boldsymbol{D=R_1 R^{-1}} D=R1R1仍旧是非奇异上三角矩阵,于是
I = Q T Q = ( Q 1 D ) T ( Q 1 D ) = D T D . (3) \boldsymbol{I = Q^{\mathrm{T}} Q = \left(Q_1 D\right)^{\mathrm{T}} \left(Q_1 D\right) = D^{\mathrm{T}} D}. \tag{3} I=QTQ=(Q1D)T(Q1D)=DTD.(3)

D = [ d 11 d 12 ⋯ d 1 n d 22 ⋯ d 2 n ⋱ ⋮ d n n ] , \boldsymbol{D} = \left[\begin{matrix} d_{11} & d_{12} & \cdots & d_{1n} \\ & d_{22} & \cdots & d_{2n} \\ & & \ddots & \vdots \\ & & & d_{nn} \end{matrix}\right], D=d11d12d22d1nd2ndnn,
并带入到公式 ( 3 ) (3) (3)中,并与单位矩阵相比较,得
d 11 2 = 1 , d 12 = ⋯ = d 1 n = 0 , d 22 2 = 1 , d 23 = ⋯ = d 2 n = 0 , ⋮ d n n 2 = 1 , \begin{aligned} d_{11}^2 &= 1, \quad d_{12}=\cdots=d_{1n}=0, \\ d_{22}^2 &= 1, \quad d_{23}=\cdots=d_{2n}=0, \\ \vdots \\ d_{nn}^2 &= 1, \end{aligned} d112d222dnn2=1,d12==d1n=0,=1,d23==d2n=0,=1,
从而有 ∣ d 11 ∣ = ∣ d 22 ∣ = ⋯ = ∣ d n n ∣ = 1 |d_{11}| = |d_{22}| = \cdots = |d_{nn}| = 1 d11=d22==dnn=1,即
D = [ ± 1 0 ⋯ 0 0 ± 1 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ ± 1 ] , \boldsymbol{D} = \left[\begin{matrix} \pm1 & 0 & \cdots & 0 \\ 0 & \pm1 & \cdots& 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \pm1 \end{matrix}\right], D=±1000±1000±1,
这说明矩阵 D \boldsymbol{D} D不仅是正交矩阵,而且还是对角线元素的绝对值全为1的对角矩阵,又由公式 ( 2 ) (2) (2)
R 1 = D R , Q 1 = Q D − 1 . \boldsymbol{R_1 = D R, \quad Q_1=Q D^{-1}}. R1=DR,Q1=QD1.
显然,当规定上三角阵 R \boldsymbol{R} R R 1 \boldsymbol{R_1} R1对角线上元素为正实数时,则 D = I \boldsymbol{D = I} D=I,那么 R 1 = R , Q 1 = Q \boldsymbol{R_1 = R, Q_1 = Q} R1=R,Q1=Q,所以 Q R \boldsymbol{QR} QR分解唯一。

唯一性证明完毕!!!!

分解方法

施密特(Schmidt)方法

施密特(Schmidt)方法求解 Q R \boldsymbol{Q R} QR的一般步骤在上面 Q R \boldsymbol{Q R} QR分解的存在和唯一性证明过程已经使用到了,具体的步骤简单描述如下:

  1. 获取 A \boldsymbol{A} A的各个列向量 α 1 , α 2 , ⋯   , α n \boldsymbol{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,,αn
  2. 由施密特(Schmidt)正交规范化得到规范后的列向量 β 1 , β 2 , ⋯   , β n \boldsymbol{\beta_1,\beta_2,\cdots,\beta_n} β1,β2,,βn,获得 Q = ( β 1 , β 2 , ⋯   , β n ) \boldsymbol{Q = (\beta_1,\beta_2,\cdots,\beta_n)} Q=(β1,β2,,βn)以及 α \boldsymbol{\alpha} α向量组到 β \boldsymbol{\beta} β向量组的转换矩阵 B \boldsymbol{B} B
  3. 最后得到 A = Q B − 1 \boldsymbol{A = Q B^{-1}} A=QB1

其中具体矩阵 Q B \boldsymbol{Q B} QB的求解请参考[矩阵的QR分解系列一] 施密特(Schmidt)正交规范化和上面的证明过程。

但是需要指出的是,在实际的 Q R \boldsymbol{Q R} QR分解求解过程中,一般不用施密特(Schmidt)正交规范化方法作 Q R \boldsymbol{Q R} QR分解,主要是利用后面介绍的两种方案。

吉文斯(Givens)方法

[矩阵的QR分解系列二] 吉文斯(Givens)变换文中可知,如果利用初等旋转矩阵 R i j \boldsymbol{R}_{i j} Rij左乘矩阵 A \boldsymbol{A} A,只改变 A \boldsymbol{A} A i i i行和第 j j j行的值。而且选择适当的 R i j \boldsymbol{R}_{i j} Rij,可以消去 A \boldsymbol{A} A中的非零元素。一般来说,作一次旋转就可以消去一个非零元素,而且在作下一次旋转时不会影响前面已化为零的元素,即不会重新又变为非零。那么就可以借助初等旋转变换将 A \boldsymbol{A} A转化为上三角矩阵,在实际处理过程中,只需要注意转化为零元素的前后顺序就可以实现。所以任何实非奇异矩阵可通过左连乘初等旋转变换转化为上三角阵,并完成 Q R \boldsymbol{Q R} QR分解。
具体步骤为:

  1. 假设有
    A ′ = R i j A , \boldsymbol{A^{\prime} = R_{i j} A}, A=RijA,

    a i g ′ = c a i g + s a j g , a j g ′ = − s a i g + c a j g , a p g ′ = a p g , p ≠ i , j ; g = 1 , 2 ⋯   , n \begin{aligned} a_{ig}^{\prime} &= ca_{ig} + sa_{jg}, \\ a_{jg}^{\prime} &= -sa_{ig} + ca_{jg}, \\ a_{pg}^{\prime} &= a_{pg}, \quad p \neq i,j; \quad g=1,2\cdots,n \end{aligned} aigajgapg=caig+sajg,=saig+cajg,=apg,p=i,j;g=1,2,n
    如果具体到使 A \boldsymbol{A} A的第 k k k列的第 j j j个元素 a j k ′ = 0 a_{jk}^{\prime} = 0 ajk=0,那么根据[矩阵的QR分解系列二] 吉文斯(Givens)变换中的理论可知
    s = a j k a i k 2 + a j k 2 , c = a i k a i k 2 + a j k 2 , (4) s = \frac{a_{jk}}{\sqrt{a_{ik}^2 + a_{jk}^2}}, \quad c = \frac{a_{ik}}{\sqrt{a_{ik}^2 + a_{jk}^2}}, \tag{4} s=aik2+ajk2 ajk,c=aik2+ajk2 aik,(4)
    其中 a i k , a j k a_{ik},a_{jk} aik,ajk不同时为零,此时
    a i k ′ = a i k + a j k > 0 , a j k ′ = 0 \begin{aligned} a_{ik}^{\prime} &= \sqrt{a_{ik} + a_{jk}} > 0, \\ a_{jk}^{\prime} &= 0 \end{aligned} aikajk=aik+ajk >0,=0
    这样就把第 k k k列的第 j j j个元素转化为零,同时使第 i i i个元素大于零,其他元素值不变。
  2. 如果 a 11 ≠ 0 a_{11} \neq 0 a11=0,按照第一步式子令 k = 1 k=1 k=1,然后连续左乘 R 12 , R 13 , ⋯   , R 1 n \boldsymbol{R_{12},R_{13},\cdots,R_{1n}} R12,R13,,R1n,这样就使得第 1 1 1列除第 1 1 1个元素为正外,其他元素都转化为零。即
    A ( 1 ) = R 1 n R 1 , n − 1 ⋯ R 12 A = [ a 11 ( 1 ) a 12 ( 1 ) ⋯ a 1 n ( 1 ) 0 a 22 ( 1 ) ⋯ a 2 n ( 1 ) ⋮ ⋮ ⋮ 0 a n 2 ( 1 ) ⋯ a n n ( 1 ) ] \boldsymbol{A^{(1)} = R_{1n}R_{1,n-1}\cdots R_{12}A} = \left[\begin{matrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} \\ \vdots & \vdots & & \vdots \\ 0 & a_{n2}^{(1)} & \cdots & a_{nn}^{(1)} \end{matrix}\right] A(1)=R1nR1,n1R12A=a11(1)00a12(1)a22(1)an2(1)a1n(1)a2n(1)ann(1)
    a 11 ( 1 ) > 0 a_{11}^{(1)} > 0 a11(1)>0
    如果 a 11 = 0 a_{11} = 0 a11=0,而由于 A \boldsymbol{A} A是可逆的,所以 a 21 , a 31 , ⋯   , a n 1 a_{21},a_{31},\cdots,a_{n1} a21,a31,,an1中至少有一个元素不为零,从中找到最小下标 l l l对应的 a l 1 ≠ 0 a_{l1} \neq 0 al1=0。那么首先左乘 R 1 l A \boldsymbol{R}_{1l}\boldsymbol{A} R1lA这样使得第一列的第一个元素转为正数不为零,那么后面就按照 a 11 ≠ 0 a_{11} \neq 0 a11=0继续进行下去,只不过在连乘时 R 1 l \boldsymbol{R}_{1l} R1l在第一个。
    同理由于 A \boldsymbol{A} A是可逆的,所以右下角 n − 1 n-1 n1子式非零,同样 a 22 ( 1 ) , a 32 ( 1 ) , ⋯   , a n 2 ( 1 ) a_{22}^{(1)},a_{32}^{(1)},\cdots,a_{n2}^{(1)} a22(1),a32(1),,an2(1)中至少有一个元素不为零,可以按照第一列方式进行下去,假设 a 22 ( 1 ) ≠ 0 a_{22}^{(1)} \neq 0 a22(1)=0情况下得 ( a 22 ( 1 ) = 0 a_{22}^{(1)} = 0 a22(1)=0情况同样处理)
    A ( 2 ) = R 2 n R 2 , n − 1 ⋯ R 23 A ( 1 ) = = [ a 11 ( 1 ) a 12 ( 1 ) a 13 ( 1 ) ⋯ a 1 n ( 1 ) 0 a 22 ( 2 ) a 23 ( 2 ) ⋯ a 2 n ( 2 ) 0 0 a 33 ( 2 ) ⋯ a 3 n ( 2 ) ⋮ ⋮ ⋮ ⋮ 0 0 a n 3 ( 2 ) ⋯ a n n ( 2 ) ] \boldsymbol{A}^{(2)} = \boldsymbol{R_{2n}R_{2,n-1}\cdots R_{23}A^{(1)}} == \left[\begin{matrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2n}^{(2)} \\ 0 & 0 & a_{33}^{(2)} & \cdots & a_{3n}^{(2)} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & a_{n3}^{(2)} & \cdots & a_{nn}^{(2)} \end{matrix}\right] A(2)=R2nR2,n1R23A(1)==a11(1)000a12(1)a22(2)00a13(1)a23(2)a33(2)an3(2)a1n(1)a2n(2)a3n(2)ann(2)
    且第一行元素不变, a 22 ( 2 ) > 0 a_{22}^{(2)} > 0 a22(2)>0
    同时对 A ( 1 ) \boldsymbol{A}^{(1)} A(1)作的旋转不影响这些 A ( 1 ) \boldsymbol{A}^{(1)} A(1)中第一列上已得到的零元素,按照这样的顺序,后面的变换就不会影响到之前的转换的零元素。
    按照上面的步骤进行下去,最后 A \boldsymbol{A} A就转化为上三角矩阵
    A ( n − 1 ) = R n − 1 , n ⋯ R 12 A = [ a 11 ( 1 ) a 12 ( 1 ) ⋯ a 1 n ( 1 ) 0 a 22 ( 2 ) ⋯ a 2 n ( 2 ) ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a n n ( n − 1 ) ] \boldsymbol{A^{(n-1)} = R_{n-1,n}\cdots R_{12}A} = \left[\begin{matrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \cdots & a_{2n}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn}^{(n-1)} \end{matrix}\right] A(n1)=Rn1,nR12A=a11(1)00a12(1)a22(2)0a1n(1)a2n(2)ann(n1)
    其中除了 a n n ( n − 1 ) a_{nn}^{(n-1)} ann(n1)外,对角线上其他所有元素都为正数,所以 a n n ( n − 1 ) a_{nn}^{(n-1)} ann(n1)的符号与矩阵 A \boldsymbol{A} A行列式的符号一致。

按照上面的步骤对 A \boldsymbol{A} A做了次 Q R \boldsymbol{QR} QR分解,
A = ( R n − 1 , n ⋯ R 12 ) − 1 A ( n − 1 ) \boldsymbol{A=(R_{n-1,n}\cdots R_{12})^{-1} A^{(n-1)}} A=(Rn1,nR12)1A(n1)

R = A ( n − 1 ) , Q = ( R n − 1 , n ⋯ R 12 ) − 1 , \boldsymbol{R=A}^{(n-1)}, \\ \boldsymbol{Q=(R_{n-1,n}\cdots R_{12})}^{-1}, R=A(n1),Q=(Rn1,nR12)1,
由于每一个 R i j \boldsymbol{R}_{ij} Rij都是正交矩阵,所以它们的连乘的逆也是正交矩阵,得到 A = Q R \boldsymbol{A=Q R} A=QR正交分解结果。

这里从上面可以看错,吉文斯方法需要计算 n ( n − 1 ) 2 \frac{n(n-1)}{2} 2n(n1)个初等旋转矩阵的乘积,当 n n n比较大时,计算量比较大。所以一般情况下,大都使用豪斯霍尔德(Householder)方法做 Q R \boldsymbol{Q R} QR分解。

豪斯霍尔德(Householder)方法

[矩阵的QR分解系列三] 豪斯霍尔德(Householder)变换文中可知,如果利用初等反射矩阵可以使任何非零向量 ξ \boldsymbol{\xi} ξ变成与给定单位向量 ζ \boldsymbol{\zeta} ζ同方向的向量 η \boldsymbol{\eta} η,那么任何实 n n n阶非奇异矩阵 A \boldsymbol{A} A可用初等反射矩阵 H = I − 2 ω ω T \boldsymbol{H=I}-2\boldsymbol{\omega \omega}^{\mathrm{T}} H=I2ωωT化为上三角矩阵。
具体步骤为:

  1. 因为 A \boldsymbol{A} A是非奇异矩阵,所以第一列向量 α 1 \boldsymbol{\alpha}_1 α1不会是零向量,所以可以按照[矩阵的QR分解系列三] 豪斯霍尔德(Householder)变换文中公式 ( 2 ) (2) (2)构造单位向量 ω ( 1 ) \boldsymbol{\omega}^{(1)} ω(1),可使得 α 1 \boldsymbol{\alpha}_1 α1转换后与单位向量 e 1 = ( 1 , 0 , ⋯   , 0 ) T \boldsymbol{e}_1=(1,0,\cdots,0)^{\mathrm{T}} e1=(1,0,,0)T同方向。所以存在初等反射矩阵 H ( 1 ) \boldsymbol{H}^{(1)} H(1),使
    H ( 1 ) A = [ ∣ a 11 ( 1 ) ∣ ∗ 0 ⋮ A n − 1 0 ] , \boldsymbol{H^{(1)}A} = \left[ \begin{matrix} |a_{11}^{(1)}| & * \\ 0 \\ \vdots & \boldsymbol{A}_{n-1} \\ 0 \end{matrix} \right], H(1)A=a11(1)00An1,
  2. 然后对 n − 1 n-1 n1阶方阵 A n − 1 \boldsymbol{A}_{n-1} An1再用 n − 1 n-1 n1阶的初等反射矩阵 H ′ ( 2 ) \boldsymbol{H}^{\prime(2)} H(2),使得
    H ′ ( 2 ) A n − 1 = [ ∣ a 22 ( 2 ) ∣ ∗ 0 ⋮ A n − 2 0 ] , \boldsymbol{H}^{\prime(2)}\boldsymbol{A}_{n-1} = \left[ \begin{matrix} |a_{22}^{(2)}| & * \\ 0 \\ \vdots & \boldsymbol{A}_{n-2} \\ 0 \end{matrix} \right], H(2)An1=a22(2)00An2,
    因此
    H ( 2 ) = [ 1 0 ⋯ 0 0 ⋮ H ′ ( 2 ) 0 ] , \boldsymbol{H}^{(2)} = \left[ \begin{matrix} 1 & 0 & \cdots & 0 \\ 0 \\ \vdots & & \boldsymbol{H}^{\prime(2)} \\ 0 \end{matrix} \right], H(2)=1000H(2)0,
    所以
    H ( 2 ) H ( 1 ) A = [ ∣ a 11 ( 1 ) ∣ ∗ 0 ∣ a 22 ( 2 ) ∣ ∗ 0 0 ⋮ ⋮ A n − 2 0 0 ] . \boldsymbol{H}^{(2)}\boldsymbol{H}^{(1)}\boldsymbol{A} = \left[ \begin{matrix} |a_{11}^{(1)}| & & * \\ 0 & |a_{22}^{(2)}| & * \\ 0 & 0 \\ \vdots & \vdots & \boldsymbol{A}_{n-2} \\ 0 & 0 \end{matrix} \right]. H(2)H(1)A=a11(1)000a22(2)00An2.
    而且,显然左乘 H ( 2 ) \boldsymbol{H}^{(2)} H(2)不改变 H ( 1 ) A \boldsymbol{H}^{(1)}\boldsymbol{A} H(1)A的第1行和第1列的元素,这个条件很重要,不然后面的结论都不能满足了。
    这里另外一个需要确定的是 H ( 2 ) \boldsymbol{H}^{(2)} H(2)也必须是初等反射阵。
    假设 H ′ ( 2 ) = I n − 1 − 2 ω ′ ω ′ T \boldsymbol{H}^{\prime(2)}=\boldsymbol{I}_{n-1} - 2\boldsymbol{\omega^{\prime} \omega^{\prime}}^{\mathrm{T}} H(2)=In12ωωT,这里 ω ′ \boldsymbol{\omega^{\prime}} ω n − 1 n-1 n1维的单位向量,然后设
    ω = ( 0 , ω ′ ) T \boldsymbol{\omega} = (0,\boldsymbol{\omega^{\prime}})^{\mathrm{T}} ω=(0,ω)T
    可知
    H ( 2 ) = I − 2 ω ω T \boldsymbol{H}^{(2)}=\boldsymbol{I}-2\boldsymbol{\omega \omega}^{\mathrm{T}} H(2)=I2ωωT
    所以 H ( 2 ) \boldsymbol{H}^{(2)} H(2)也是一个初等反射阵。
  3. 这样按照顺序继续进行下去,经过 n − 1 n-1 n1次左乘初等反射阵, A \boldsymbol{A} A便可以化为一个上三角矩阵
    H ( n − 1 ) ⋯ H ( 1 ) A = A ( n ) . \boldsymbol{H}^{(n-1)}\cdots\boldsymbol{H}^{(1)}\boldsymbol{A} = \boldsymbol{A}^{(n)}. H(n1)H(1)A=A(n).
    而且由于每一个子矩阵 A ( n − 1 ) , A ( n − 2 ) , ⋯   , A ( 2 ) \boldsymbol{A}^{(n-1)},\boldsymbol{A}^{(n-2)},\cdots,\boldsymbol{A}^{(2)} A(n1),A(n2),,A(2)的第1列向量都不为零向量,否则与矩阵 A \boldsymbol{A} A是非奇异矩阵矛盾,所以上面的过程一定可以进行到底。
    所以最终可以令
    R = A ( n ) Q = ( H ( n − 1 ) ⋯ H ( 1 ) ) − 1 \begin{aligned} \boldsymbol{R} &= \boldsymbol{A}^{(n)} \\ \boldsymbol{Q} &= (\boldsymbol{H}^{(n-1)}\cdots\boldsymbol{H}^{(1)})^{-1} \end{aligned} RQ=A(n)=(H(n1)H(1))1
    又每一个 H ( i ) ( i = 1 , 2 , ⋯   , n − 1 ) \boldsymbol{H}^{(i)}(i=1,2,\cdots,n-1) H(i)(i=1,2,,n1)是正交阵,所以连乘积的逆也是正交阵,最后成分解。

从上面的步骤可以看出,豪斯霍尔德方法只需要左乘 n − 1 n-1 n1个初等反射阵,计算量大概是吉文斯方法的一半,计算上有优势。
但是对于稀疏矩阵,用吉文斯方法作 Q R \boldsymbol{Q R} QR分解仍是比较方便。

例子

施密特(Schmidt)方法

求下面矩阵
A = [ 1 1 0 1 − 1 1 0 0 2 ] \boldsymbol{A}=\left[\begin{matrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 0 & 2 \end{matrix}\right] A=110110012
Q R Q R QR分解。
解:
α 1 = ( 1 , 1 , 0 ) T , α 2 = ( 1 , − 1 , 0 ) T , α 3 = ( 0 , 1 , 2 ) T \boldsymbol{\alpha}_{1}=(1,1,0)^{\mathrm{T}}, \boldsymbol{\alpha}_{2}=(1,-1,0)^{\mathrm{T}}, \boldsymbol{\alpha}_{3}=(0,1,2)^{\mathrm{T}} α1=(1,1,0)T,α2=(1,1,0)T,α3=(0,1,2)T。由施密特(Schmidt)正交规范化方法得
β 1 ′ = α 1 = ( 1 , 1 , 0 ) T , β 2 ′ = α 2 − ( β 1 ′ , α 2 ) ( β 1 ′ , β 1 ′ ) β 1 ′ = α 2 = ( 1 , − 1 , 0 ) T , β 3 ′ = α 3 − ( β 1 ′ , α 3 ) ( β 1 ′ , β 1 ′ ) β 1 ′ − ( β 2 ′ , α 3 ) ( β 2 ′ , β 2 ′ ) β 2 ′ = α 3 − 1 2 β 1 ′ + 1 2 β 2 ′ = α 3 − 1 2 α 1 + 1 2 α 2 = ( 0 , 0 , 2 ) T , \begin{aligned} \boldsymbol{\beta}_{1}^{\prime} &=\boldsymbol{\alpha}_{1}=(1,1,0)^{\mathrm{T}}, \\ \boldsymbol{\beta}_{2}^{\prime} &=\boldsymbol{\alpha}_{2}-\frac{\left(\boldsymbol{\beta}_{1}^{\prime}, \boldsymbol{\alpha}_{2}\right)}{\left(\boldsymbol{\beta}_{1}^{\prime}, \boldsymbol{\beta}_{1}^{\prime}\right)} \boldsymbol{\beta}_{1}^{\prime}=\boldsymbol{\alpha}_{2}=(1,-1,0)^{\mathrm{T}}, \\ \boldsymbol{\beta}_{3}^{\prime} &=\boldsymbol{\alpha}_{3}-\frac{\left(\boldsymbol{\beta}_{1}^{\prime}, \boldsymbol{\alpha}_{3}\right)}{\left(\boldsymbol{\beta}_{1}^{\prime}, \boldsymbol{\beta}_{1}^{\prime}\right)} \boldsymbol{\beta}_{1}^{\prime}-\frac{\left(\boldsymbol{\beta}_{2}^{\prime}, \boldsymbol{\alpha}_{3}\right)}{\left(\boldsymbol{\beta}_{2}^{\prime}, \boldsymbol{\beta}_{2}^{\prime}\right)} \boldsymbol{\beta}_{2}^{\prime} \\ &=\boldsymbol{\alpha}_{3}-\frac{1}{2} \boldsymbol{\beta}_{1}^{\prime}+\frac{1}{2} \boldsymbol{\beta}_{2}^{\prime}=\boldsymbol{\alpha}_{3}-\frac{1}{2} \boldsymbol{\alpha}_{1}+\frac{1}{2} \boldsymbol{\alpha}_{2}=(0,0,2)^{\mathrm{T}}, \end{aligned} β1β2β3=α1=(1,1,0)T,=α2(β1,β1)(β1,α2)β1=α2=(1,1,0)T,=α3(β1,β1)(β1,α3)β1(β2,β2)(β2,α3)β2=α321β1+21β2=α321α1+21α2=(0,0,2)T,
单位化后得
β 1 = β 1 ′ ∣ β 1 ′ ∣ = β 1 ′ 2 = ( 1 2 , 1 2 , 0 ) T = 1 2 α 1 , β 2 = β 2 ′ ∣ β 2 ′ ∣ = β 2 ′ 2 = ( 1 2 , 1 − 2 , 0 ) T = 1 2 α 2 , β 3 = β 3 ′ ∣ β 3 ′ ∣ = β 3 ′ 2 = ( 0 , 0 , 1 ) T = − 1 4 α 1 + 1 4 α 2 + 1 2 α 3 , \begin{aligned} \boldsymbol{\beta}_{1}&=\frac{\boldsymbol{\beta}_{1}^{\prime}}{|\boldsymbol{\beta}_{1}^{\prime}|}=\frac{\boldsymbol{\beta}_{1}^{\prime}}{\sqrt{2}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^{\mathrm{T}}=\frac{1}{\sqrt{2}} \boldsymbol{\alpha}_{1}, \\ \boldsymbol{\beta}_{2}&=\frac{\boldsymbol{\beta}_{2}^{\prime}}{|\boldsymbol{\beta}_{2}^{\prime}|}=\frac{\boldsymbol{\beta}_{2}^{\prime}}{\sqrt{2}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{-\sqrt{2}}, 0\right)^{\mathrm{T}}=\frac{1}{\sqrt{2}} \boldsymbol{\alpha}_{2}, \\ \boldsymbol{\beta}_{3}&=\frac{\boldsymbol{\beta}_{3}^{\prime}}{|\boldsymbol{\beta}_{3}^{\prime}|}=\frac{\boldsymbol{\beta}_{3}^{\prime}}{2}=(0,0,1)^{\mathrm{T}}=-\frac{1}{4} \boldsymbol{\alpha}_{1}+\frac{1}{4} \boldsymbol{\alpha}_{2}+\frac{1}{2} \boldsymbol{\alpha}_{3}, \end{aligned} β1β2β3=β1β1=2 β1=(2 1,2 1,0)T=2 1α1,=β2β2=2 β2=(2 1,2 1,0)T=2 1α2,=β3β3=2β3=(0,0,1)T=41α1+41α2+21α3,
所以
Q = ( β 1 , β 2 , β 3 ) = ( α 1 , α 2 , α 3 ) [ 1 2 0 − 1 4 0 1 2 1 4 0 0 1 2 ] = A B \begin{aligned} \boldsymbol{Q} = \left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}\right) = \left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right) \left[\begin{matrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{4} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{4} \\ 0 & 0 & \frac{1}{2} \end{matrix}\right] = \boldsymbol{A B} \end{aligned} Q=(β1,β2,β3)=(α1,α2,α3)2 10002 10414121=AB
A = Q B − 1 = ( β 1 , β 2 , β 3 ) [ 1 2 0 − 1 4 0 1 2 1 4 0 0 1 2 ] − 1 = [ 1 2 1 2 0 1 2 − 1 2 0 0 0 1 ] [ 1 2 0 − 1 4 0 1 2 1 4 0 0 1 2 ] − 1 = [ 1 2 1 2 0 1 2 − 1 2 0 0 0 1 ] [ 2 0 1 2 0 2 − 1 2 0 0 2 ] = Q R \begin{aligned} \boldsymbol{A}=\boldsymbol{Q B^{-1}} &=\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}\right) \left[\begin{matrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{4} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{4} \\ 0 & 0 & \frac{1}{2} \end{matrix}\right]^{-1} \\ &= \left[\begin{matrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{matrix}\right] \left[\begin{matrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{4} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{4} \\ 0 & 0 & \frac{1}{2} \end{matrix}\right]^{-1} \\ &= \left[\begin{matrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{matrix}\right] \left[\begin{matrix} \sqrt{2} & 0 & \frac{1}{\sqrt{2}} \\ 0 & \sqrt{2} &-\frac{1}{\sqrt{2}} \\ 0 & 0 & 2 \end{matrix}\right] = \boldsymbol{Q R} \end{aligned} A=QB1=(β1,β2,β3)2 10002 1041412112 12 102 12 100012 10002 1041412112 12 102 12 100012 0002 02 12 12=QR

吉文斯(Givens)方法

利用初等旋转变换求下列矩阵 A \boldsymbol{A} A Q R \boldsymbol{Q R} QR分解
A = [ 12 − 20 41 9 − 15 − 63 20 50 35 ] \boldsymbol{A} = \left[\begin{matrix} 12 & -20 & 41 \\ 9 & -15 & -63 \\ 20 & 50 & 35 \end{matrix}\right] A=12920201550416335
解:
第一步:
R 12 \boldsymbol{R}_{12} R12根据上面公式 ( 4 ) (4) (4)可知
s = a 21 a 11 2 + a 21 2 = 3 5 , c = a 11 a 11 2 + a 21 2 = 4 5 , s = \frac{a_{21}}{\sqrt{a_{11}^2 + a_{21}^2}} = \frac{3}{5}, \quad c = \frac{a_{11}}{\sqrt{a_{11}^2 + a_{21}^2}} = \frac{4}{5}, s=a112+a212 a21=53,c=a112+a212 a11=54,

R 12 = [ c s 0 − s c 0 0 0 1 ] = [ 4 5 3 5 0 − 3 5 4 5 0 0 0 1 ] \boldsymbol{R}_{12} = \left[\begin{matrix} c & s & 0 \\ -s & c & 0 \\ 0& 0 & 1 \end{matrix}\right] = \left[\begin{matrix} \frac{4}{5} & \frac{3}{5} & 0 \\ -\frac{3}{5} & \frac{4}{5} & 0 \\ 0 & 0 & 1 \end{matrix}\right] R12=cs0sc0001=5453053540001
所以
R 12 A = [ 15 − 25 − 5 0 0 − 75 20 50 35 ] \boldsymbol{R}_{12}\boldsymbol{A} = \left[\begin{matrix} 15 & -25 & -5 \\ 0 & 0 & -75 \\ 20 & 50 & 35 \end{matrix}\right] R12A=150202505057535
同样可得
R 13 = [ c 0 − s 1 0 − s 0 c ] = [ 3 5 0 4 5 0 1 0 − 4 5 0 3 5 ] \boldsymbol{R}_{13} = \left[\begin{matrix} c & 0 & -s \\ & 1 & 0 \\ -s & 0 & c \end{matrix}\right] = \left[\begin{matrix} \frac{3}{5} & 0 & \frac{4}{5} \\ 0 & 1 & 0 \\ -\frac{4}{5} & 0 & \frac{3}{5} \end{matrix}\right] R13=cs010s0c=5305401054053
所以
A ( 1 ) = R 13 R 12 A = [ 25 − 25 25 0 0 − 75 0 50 25 ] \boldsymbol{A^{(1)}} = \boldsymbol{R}_{13}\boldsymbol{R}_{12}\boldsymbol{A} = \left[\begin{matrix} 25 & -25 & 25 \\ 0 & 0 & -75 \\ 0 & 50 & 25 \end{matrix}\right] A(1)=R13R12A=250025050257525
第二步:
可得
R 23 = [ 1 0 0 c s 0 − s c ] = [ 1 0 0 0 0 1 0 − 1 0 ] \boldsymbol{R}_{23} = \left[\begin{matrix} 1 & 0 & 0 \\ & c & s \\ 0 & -s & c \end{matrix}\right] = \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{matrix}\right] R23=100cs0sc=100001010
所以
A ( 2 ) = R 23 A ( 1 ) = [ 25 25 25 0 50 25 0 0 75 ] \boldsymbol{A^{(2)}} = \boldsymbol{R}_{23}\boldsymbol{A^{(1)}} = \left[\begin{matrix} 25 & 25 & 25 \\ 0 & 50 & 25 \\ 0 & 0 & 75 \end{matrix}\right] A(2)=R23A(1)=250025500252575

Q = R 23 R 13 R 12 − 1 = R 23 R 13 R 12 T = [ 12 25 − 16 25 15 25 9 25 − 12 25 − 20 25 20 25 15 25 0 ] R = A ( 2 ) = [ 25 25 25 0 50 25 0 0 75 ] \boldsymbol{Q}={\boldsymbol{R}_{23}\boldsymbol{R}_{13}\boldsymbol{R}_{12}}^{-1} = {\boldsymbol{R}_{23}\boldsymbol{R}_{13}\boldsymbol{R}_{12}}^{\mathrm{T}} = \left[\begin{matrix} \frac{12}{25} & -\frac{16}{25} & \frac{15}{25} \\ \frac{9}{25} & -\frac{12}{25} & -\frac{20}{25} \\ \frac{20}{25} & \frac{15}{25} & 0 \end{matrix}\right] \\ \boldsymbol{R} = \boldsymbol{A^{(2)}} = \left[\begin{matrix} 25 & 25 & 25 \\ 0 & 50 & 25 \\ 0 & 0 & 75 \end{matrix}\right] Q=R23R13R121=R23R13R12T=25122592520251625122515251525200R=A(2)=250025500252575
最终
A = Q R . \boldsymbol{A = QR}. A=QR.
分解完成。

豪斯霍尔德(Householder)方法

利用初等旋转变换求下列矩阵 A \boldsymbol{A} A Q R \boldsymbol{Q R} QR分解
A = [ 2 2 1 1 2 2 2 1 2 ] \boldsymbol{A} = \left[\begin{matrix} 2 & 2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 2 \end{matrix}\right] A=212221122
解:
第一步:
α 1 = ( 2 , 1 , 2 ) T ≠ 0 \boldsymbol{\alpha}_{1}=(2,1,2)^{\mathrm{T}} \neq 0 α1=(2,1,2)T=0,根据[矩阵的QR分解系列三] 豪斯霍尔德(Householder)变换文中公式 ( 2 ) (2) (2)构造单位向量
ω ( 1 ) = α 1 ( 1 ) − ∣ α 1 ( 1 ) ∣ e 1 ∣ α 1 ( 1 ) − ∣ α 1 ( 1 ) ∣ e 1 ∣ = ( 2 , 1 , 2 ) T − 3 e 1 ∣ ( 2 , 1 , 2 ) T − 3 e 1 ∣ = ( − 1 6 , 1 6 , 2 6 ) T \begin{aligned} \boldsymbol{\omega}^{(1)} &=\frac{\boldsymbol{\alpha}_{1}^{(1)}-\left|\boldsymbol{\alpha}_{1}^{(1)}\right| \boldsymbol{e}_{1}}{\left|\boldsymbol{\alpha}_{1}^{(1)}-\right| \boldsymbol{\alpha}_{1}^{(1)}\left|\boldsymbol{e}_{1}\right|}=\frac{(2,1,2)^{\mathrm{T}}-3 \boldsymbol{e}_{1}}{\left|(2,1,2)^{\mathrm{T}}-3 \boldsymbol{e}_{1}\right|} \\ &=\left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)^{\mathrm{T}} \end{aligned} ω(1)=α1(1)α1(1)e1α1(1)α1(1)e1=(2,1,2)T3e1(2,1,2)T3e1=(6 1,6 1,6 2)T
于是
H ( 1 ) = I 3 − 2 ω ( 1 ) ω ( 1 ) T = [ 2 3 1 3 2 3 1 3 2 3 − 2 3 2 3 − 2 3 − 1 3 ] \boldsymbol{H}^{(1)} = \boldsymbol{I}_3 -2\boldsymbol{\omega}^{(1)} \boldsymbol{\omega}^{(1)\mathrm{T}} = \left[\begin{matrix} \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & -\frac{1}{3} \end{matrix}\right] H(1)=I32ω(1)ω(1)T=3233233232323231
从而得
H ( 1 ) A = [ 3 8 3 8 3 0 4 3 1 3 0 − 1 3 − 4 3 ] = [ 3 8 3 8 3 0 0 A 2 ] \boldsymbol{H}^{(1)} \boldsymbol{A}= \left[\begin{matrix} 3 & \frac{8}{3} & \frac{8}{3} \\ 0 & \frac{4}{3} & \frac{1}{3} \\ 0 & -\frac{1}{3} & -\frac{4}{3} \end{matrix}\right] = \left[\begin{matrix} 3 & \frac{8}{3} & \frac{8}{3} \\ 0 \\ 0 & & \boldsymbol{A}_2 \end{matrix}\right] H(1)A=300383431383134=3003838A2
第二步:
A 2 \boldsymbol{A}_2 A2也作如上的计算,所以
ω ′ ( 2 ) = ( 4 3 , − 1 3 ) T − ∣ ( 4 3 , − 1 3 ) T ∣ e 1 ∣ ( 4 3 , − 1 3 ) T − ∣ ( 4 3 , − 1 3 ) T ∣ e 1 ∣ = ( 4 − 17 34 − 8 17 , − 1 34 − 8 17 ) T \begin{aligned} \boldsymbol{\omega}^{\prime(2)} &=\frac{\left(\frac{4}{3},-\frac{1}{3}\right)^{\mathrm{T}}-\left|\left(\frac{4}{3},-\frac{1}{3}\right)^{\mathrm{T}}\right| \boldsymbol{e}_{1}}{\left|\left(\frac{4}{3},-\frac{1}{3}\right)^{\mathrm{T}}-\right|\left(\frac{4}{3},-\frac{1}{3}\right)^{\mathrm{T}}\left|\boldsymbol{e}_{1}\right|} \\ &=\left(\frac{4-\sqrt{17}}{\sqrt{34-8 \sqrt{17}}},-\frac{1}{\sqrt{34-8 \sqrt{17}}}\right)^{\mathrm{T}} \end{aligned} ω(2)=(34,31)T(34,31)Te1(34,31)T(34,31)Te1=(34817 417 ,34817 1)T
于是得
H ′ ( 2 ) = I 2 − 2 ω ′ ( 2 ) ω ′ ( 2 ) T = ( 1 − 2 ( 4 − 17 ) 2 34 − 8 17 2 ( 4 − 17 ) 34 − 8 17 2 ( 4 − 17 ) 34 − 8 17 1 − 2 34 − 8 17 ) \boldsymbol{H}^{\prime(2)}=\boldsymbol{I}_{2}-2\boldsymbol{\omega}^{\prime(2)} \boldsymbol{\omega}^{\prime(2) \mathrm{T}}=\left(\begin{array}{cc} 1-\frac{2(4-\sqrt{17})^{2}}{34-8 \sqrt{17}} & \frac{2(4-\sqrt{17})}{34-8 \sqrt{17}} \\ \frac{2(4-\sqrt{17})}{34-8 \sqrt{17}} & 1-\frac{2}{34-8 \sqrt{17}} \end{array}\right) H(2)=I22ω(2)ω(2)T=(134817 2(417 )234817 2(417 )34817 2(417 )134817 2)
所以
H ( 2 ) = [ 1 0 0 H ′ ( 2 ) ] = [ 1 0 0 0 1 − 2 ( 4 − 17 ) 2 34 − 8 17 2 ( 4 − 17 ) 34 − 8 17 0 2 ( 4 − 17 ) 34 − 8 17 1 − 2 34 − 8 17 ] \boldsymbol{H}^{(2)}=\left[\begin{matrix} 1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{H}^{\prime(2)} \end{matrix}\right]= \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1-\frac{2(4-\sqrt{17})^{2}}{34-8 \sqrt{17}} & \frac{2(4-\sqrt{17})}{34-8 \sqrt{17}} \\ 0 & \frac{2(4-\sqrt{17})}{34-8 \sqrt{17}} & 1-\frac{2}{34-8 \sqrt{17}} \end{matrix}\right] H(2)=[100H(2)]=1000134817 2(417 )234817 2(417 )034817 2(417 )134817 2
最后得
H ( 2 ) H ( 1 ) A = [ 3 8 3 8 3 0 17 3 8 17 51 0 0 5 17 17 ] = R \boldsymbol{H}^{(2)} \boldsymbol{H}^{(1)} \boldsymbol{A}= \left[\begin{matrix} 3 & \frac{8}{3} & \frac{8}{3} \\ 0 & \frac{\sqrt{17}}{3} & \frac{8 \sqrt{17}}{51} \\ 0 & 0 & \frac{5 \sqrt{17}}{17} \end{matrix}\right]=\boldsymbol{R} H(2)H(1)A=30038317 03851817 17517 =R
所以 A \boldsymbol{A} A Q R \boldsymbol{Q R} QR分解为
A = ( H ( 2 ) H ( 1 ) ) − 1 R = [ 2 3 2 17 51 − 3 17 17 1 3 10 17 51 2 17 17 2 3 − 7 17 51 2 17 17 ] [ 3 8 3 8 3 0 17 3 8 17 51 0 0 5 17 17 ] \boldsymbol{A}=\left(\boldsymbol{H}^{(2)} \boldsymbol{H}^{(1)}\right)^{-1} \boldsymbol{R}= \left[\begin{matrix} \frac{2}{3} & \frac{2 \sqrt{17}}{51} & -\frac{3 \sqrt{17}}{17} \\ \frac{1}{3} & \frac{10 \sqrt{17}}{51} & \frac{2 \sqrt{17}}{17} \\ \frac{2}{3} & -\frac{7 \sqrt{17}}{51} & \frac{2 \sqrt{17}}{17} \end{matrix}\right] \left[\begin{matrix} 3 & \frac{8}{3} & \frac{8}{3} \\ 0 & \frac{\sqrt{17}}{3} & \frac{8 \sqrt{17}}{51} \\ 0 & 0 & \frac{5 \sqrt{17}}{17} \end{matrix}\right] A=(H(2)H(1))1R=32313251217 511017 51717 17317 17217 17217 30038317 03851817 17517
分解完成。

引用

【1】 矩阵论(第二版)

  • 32
    点赞
  • 85
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值