之前介绍的矩阵的三角分解系列介绍了利用矩阵初等变换解决了矩阵三角化问题以及具体的三角分解。但是以初等变换工具的三角分解方法并不能消除病态线性方程组不稳定问题,而且有时候对于可逆矩阵有可能也不存在三角分解。所以后面为了解决这里问题,发展出来了以正交(酉)变换的矩阵的QR(正交三角)分解,矩阵的正交三角分解是一种对任何可逆矩阵均存在理想分解。进行QR分解需要用到施密特(Schmidt)正交规范化,吉文斯(Givens)变换和豪斯霍尔德(Householder)变换等。这里矩阵的QR分解系列教程主要是针对在学习QR分解时候的涉及到的一些细节,包括很多方法的来源和证明等,以及其中用到的一些矩阵操作的基础知识,主要包括:
- [矩阵的QR分解系列一] 施密特(Schmidt)正交规范化
- [矩阵的QR分解系列二] 吉文斯(Givens)变换
- [矩阵的QR分解系列三] 豪斯霍尔德(Householder)变换
- [矩阵的QR分解系列四] QR(正交三角)分解
- [矩阵的QR分解系列五] Eigen中的QR分解
这个系列后面文章会用到前面文章的理论和技术,所以建议按照顺序查看。
简介
初等旋转变换或者说是吉文斯(Givens)变换是一种正交变换,经过多次吉文斯(Givens)变换可以把矩阵转换成上三角形式,是一种常用的 Q R \boldsymbol{Q R} QR分解方式。
初等旋转变换
定义
在平面 R 2 \boldsymbol{R^2} R2中旋转变换对应的矩阵为
A = [ c o s θ s i n θ − s i n θ c o s θ ] . \boldsymbol{A} = \left[\begin{matrix} cos \theta & sin \theta \\ -sin \theta & cos \theta \end{matrix}\right]. A=[cosθ−sinθsinθcosθ].
一般在 n n n维欧式空间 V \boldsymbol{V} V中取一组标准正交基 e 1 , e 2 , ⋯ , e n e_1,e_2,\cdots,e_n e1,e2,⋯,en,沿平面 [ e i , e j ] [e_i,e_j] [ei,ej]旋转,它的旋转矩阵为
R i j = [ 1 ⋱ 1 c o s θ 0 ⋯ 0 s i n θ 0 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 0 − s i n θ 0 ⋯ 0 c o s θ 1 ⋱ 1 ] . \boldsymbol{R}_{i j} = \left[\begin{matrix} 1 \\ & \ddots \\ & & 1 \\ & & & cos \theta & 0 & \cdots & 0 & sin \theta \\ & & & 0 & 1 & \cdots & 0 & 0 \\ & & & \vdots & \vdots & & \vdots & \vdots \\ & & & 0 & 0 & \cdots & 1 & 0 \\ & & & -sin \theta & 0 & \cdots & 0 & cos \theta \\ & & & & & & & & 1 \\ & & & & & & & & & \ddots \\ & & & & & & & & & & 1 \end{matrix}\right]. Rij=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡1⋱1cosθ0⋮0−sinθ01⋮00⋯⋯⋯⋯00⋮10sinθ0⋮0cosθ1⋱1⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤.
这里矩阵 R i j \boldsymbol{R}_{i j} Rij里面元素满足: r i i = c o s θ , r i j = s i n θ , r j i = − s i n θ , r j j = c o s θ ( i < j ) , r p p = 1 ( p ≠ i , j ) r_{i i} = cos \theta,r_{i j} = sin \theta,r_{j i} = -sin \theta,r_{jj}=cos \theta (i < j),r_{p p} = 1(p \neq i,j) rii=cosθ,rij=sinθ,rji=−sinθ,rjj=cosθ(i<j),rpp=1(p=i,j),除此之外其余元素 r p q = 0 r_{pq} = 0 rpq=0。可以看成是 n n n阶单位矩阵 I \boldsymbol{I} I修改而成:将 I \boldsymbol{I} I位于 ( i , i ) , ( i , j ) , ( j , i ) , ( j , j ) (i,i),(i,j),(j,i),(j,j) (i,i),(i,j),(j,i),(j,j)上的元素分别替换成 c o s θ , s i n θ , − s i n θ , c o s θ cos \theta,sin \theta, -sin \theta, cos \theta cosθ,sinθ,−sinθ,cosθ,其余元素保持不变。式中的 θ \theta θ通常称为旋转角,而 c o s θ , s i n θ cos \theta, sin \theta cosθ,sinθ常分别记为 c , s c,s c,s,所以满足 c 2 + s 2 = 1 c^2 + s^2 = 1 c2+s2=1,所以矩阵 R i j \boldsymbol{R}_{i j} Rij可以简记为
R i j = [ 1 ⋱ 1 c 0 ⋯ 0 s 0 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 0 − s 0 ⋯ 0 c 1 ⋱ 1 ] . (1) \boldsymbol{R}_{i j} = \left[\begin{matrix} 1 \\ & \ddots \\ & & 1 \\ & & & c & 0 & \cdots & 0 & s \\ & & & 0 & 1 & \cdots & 0 & 0 \\ & & & \vdots & \vdots & & \vdots & \vdots \\ & & & 0 & 0 & \cdots & 1 & 0 \\ & & & -s & 0 & \cdots & 0 & c \\ & & & & & & & & 1 \\ & & & & & & & & & \ddots \\ & & & & & & & & & & 1 \end{matrix}\right]. \tag{1} Rij=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡1⋱1c0⋮0−

本文详细介绍了吉文斯变换,这是一种正交变换,通过多次应用可以将矩阵转换为上三角形式。吉文斯变换矩阵具有旋转性质,其特点是保持向量长度不变,是矩阵QR分解的重要工具。文中还给出了变换矩阵的定义、性质、应用实例以及如何使用吉文斯变换简化矩阵列向量。
最低0.47元/天 解锁文章
452

被折叠的 条评论
为什么被折叠?



