data = pd.Series(np.random.randn(9),\
index=[['a','a','a','b','b','b','c','c','c'],
[1,2,3,1,2,3,1,2,3]])
data
a 1 -0.901880
2 0.083255
3 1.002014
b 1 2.033284
2 -1.063635
3 -0.415264
c 1 1.157149
2 0.360776
3 1.903217
dtype: float64
1.使用数组方式,可以直接访问值
data[0]
-0.9018795712740308
2.使用第一个索引,得到新的Series这个新的Series的索引是(1,2,3)
data[‘a’]
1 -0.901880
2 0.083255
3 1.002014
dtype: float64
3.继续使用下一层索引访问值,注意第二个中括号表示索引值
data[‘a’][1]
-0.9018795712740308
4.注意使用数字下标切片的都是数组方式
data[0:3] (新Serise)
a 1 -0.901880
2 0.083255
3 1.002014
dtype: float64
因为data[0:3]仍旧是两个索引,所以
data[0:3][0]是第一个值
-0.9018795712740308
data[0:3][‘a’][1]是第一个值
-0.9018795712740308
data[‘a’][0:3] (新Series)
1 -0.901880
2 0.083255
3 1.002014
dtype: float64
因为data[‘a’][0:3] 的索引是1,2,3,所以
data[‘a’][0:3][1] 是第一个值
-0.9018795712740308
5.这种表达方式没意义,属于无限循环,对Series切片还是Series
data[0:3][0:3][0:3][0:3]
总而言之对Series进行单下标数组形式访问时,索引为数字时,优先使用索引访问
data = pd.Series(np.random.randn(9),\
index=[[1,1,1,2,2,2,3,3,3],
[1,2,3,1,2,3,1,2,3]])
1 1 0.684362
2 0.618082
3 -1.830816
2 1 -0.049315
2 0.018958
3 0.624351
3 1 -1.776237
2 -0.278731
3 -2.066620
dtype: float64
data[1]
1 0.684362
2 0.618082
3 -1.830816
dtype: float64
data[0] 不存在