pandas中访问使用多个索引的Series

data = pd.Series(np.random.randn(9),\
                 index=[['a','a','a','b','b','b','c','c','c'],
                       [1,2,3,1,2,3,1,2,3]])
data
a  1   -0.901880
   2    0.083255
   3    1.002014
b  1    2.033284
   2   -1.063635
   3   -0.415264
c  1    1.157149
   2    0.360776
   3    1.903217
dtype: float64

1.使用数组方式,可以直接访问值
data[0]
-0.9018795712740308
2.使用第一个索引,得到新的Series这个新的Series的索引是(1,2,3)
data[‘a’]
1 -0.901880
2 0.083255
3 1.002014
dtype: float64
3.继续使用下一层索引访问值,注意第二个中括号表示索引值
data[‘a’][1]
-0.9018795712740308
4.注意使用数字下标切片的都是数组方式
data[0:3] (新Serise)
a 1 -0.901880
2 0.083255
3 1.002014
dtype: float64
因为data[0:3]仍旧是两个索引,所以
data[0:3][0]是第一个值
-0.9018795712740308
data[0:3][‘a’][1]是第一个值
-0.9018795712740308

data[‘a’][0:3] (新Series)
1 -0.901880
2 0.083255
3 1.002014
dtype: float64

因为data[‘a’][0:3] 的索引是1,2,3,所以
data[‘a’][0:3][1] 是第一个值
-0.9018795712740308

5.这种表达方式没意义,属于无限循环,对Series切片还是Series
data[0:3][0:3][0:3][0:3]

总而言之对Series进行单下标数组形式访问时,索引为数字时,优先使用索引访问

data = pd.Series(np.random.randn(9),\
                 index=[[1,1,1,2,2,2,3,3,3],
                       [1,2,3,1,2,3,1,2,3]])
1  1    0.684362
   2    0.618082
   3   -1.830816
2  1   -0.049315
   2    0.018958
   3    0.624351
3  1   -1.776237
   2   -0.278731
   3   -2.066620
dtype: float64

data[1]
1 0.684362
2 0.618082
3 -1.830816
dtype: float64
data[0] 不存在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值