23、集合变更观察与相关术语解析

集合变更观察与相关术语解析

1. 集合变更观察

当对应概念名称的内部状态发生变化时,根键路径末端的值也会相应改变。 bind_toObject_withKeyPath_options 方法接受一个选项参数,Cocoa 提供了大量默认选项名称,这些选项假定绑定对象是用户界面控件。例如,其中一些选项用于管理对象选择的处理方式。这些选项在 Apple 的 NSKeyValueBindingCreation 协议参考文档中有简要描述。

键值观察也可用于数组(以及未使用过的 NSSet 类)。以下是一个示例类:

class ArrayHolder < OSX::NSObject
  kvc_array_accessor :values
  def initWithValues(*initial_values)
    @values = NSMutableArray.arrayWithArray(initial_values)
    self
  end
  def values; @values; end
end

kvc_array_accessor 表明 values 属性是 Cocoa 文档中所说的多对多关系。该类未定义通常的 getter 和 setter 方法,因为数组的操作方式不同,如下测试所示:

def setup
  @watcher = ruby
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值