1、欧几里德算法
欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:
定理:gcd(a,b) = gcd(b,a mod b),其中,gcd(a,b)就表示求最大公约数。
证明:a可以表示成a = kb + r,则r = a mod b
假设d是a,b的一个公约数,则有a=d*k1,b=d*k2,r=a-kb=d*k1-k*d*k2=d*(k1-k*k2),也就是说d也是r的公约数。
假设d 是(b,a mod b)的公约数,则b=d*k1,r=d*k2,而因为r=a-kb,所以a=kb+r=k*d*k1+d*k2=d*(k*k1+k2),因此d也是(a,b)的公约数。因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证
其算法用描述为:
E1: r=m%n
E2 if r= 0
return n //(即为最大公因数)
else
{ m = n; n = r; }
返回E1
算法用程序实现为:
int gcb(int m,int n)
{
int r;
r=m%n;
if(r==0) return n;
while(r)
{
m=n;
n=r;
r=m%n;
}//while
return n;
}
这两个数的最小公倍倍数也就是他们的乘积除以最大公约数了。
2、扩展的欧几里德算法
A)给定的两个正整数a,b,计算它们的最大公因子d和两个整数a和b,使得ax+by=d,即gcd(a,b)=ax+by。
要证明这个定理,首先需给出一个定理带余除法:
若a,b是两个整数,其中b>0,则存在两个整数q,r,使得
a = b*q + r 0<=r<b
其中q和r是唯一的。
这个定理证明是简单的,有了这个定义,我们就来证明欧几里德算法
a = q0*b + r0
b = q1*r0 + r1
r0= q2*r1 + r2
...
rn-3=qn-1*rn-2+ r n-1
rn-2 = qn* rn-1 + r n(r n = 0)
这里r n-1就是最大公约数。
现在就需要反推回去,可以得到r可以用a,b线性表示
ri=(Xi-2-Qi*Xi-1)*a-(Yi-2-Qi*Yi-1)*b
下一步就是求x,y的值。
Xi=Xi-2-Qi*Xi-1
Yi=Yi-2-Qi*Yi-1
B)求解x,y的方法
我们不妨设a>b。
1、显然当b=0,gcd(a,b)=a,此时x=1,y=0;
2、ab<>0时,设ax1+by1=gcd(a,b);bx2+(a%b)y2=gcd(b,a%b); 根据朴素欧几里德原理有
gcd(a,b)=gcd(b,a%b); 则:ax1+by1=bx2+(a%b)y2;
即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+b(x2-(a/b)*y2); 根据恒等定理得:x1=y2;y1=x2-(a/b)*y2; 这样我们就得到了求解x1,y1的方法:x1,y1的值基于x2,y2,依此类推,这就是递归了。
C)程序描述
#include<stdio.h>
int x,y,q;
void swap(int&m,int &n)
{
int temp;
temp=m;
m=n;
n=temp;
}
void extend_Eulid(inta,int b)
{
if (b==0) { x=1; y=0;q=a; }
else
{
extend_Eulid(b,a%b);
int temp=x; x=y; y=temp-a/b*y;
} //else
} //extend_Euild
int main()
{ int a,b;
scanf("%d",&a);
scanf("%d",&b);
if (a<b) swap(a,b);
extend_Eulid(a,b);
printf("%d=(%d)*%d+(%d)*%d\n",q,x,a,y,b);
} //main
3、Stein算法
欧几里德算法是计算两个数最大公约数的传统算法,他无论从理论还是从效率上都是很好的。但是他有一个致命的缺陷,这个缺陷只有在大素数时才会显现出来。
考虑现在的硬件平台,一般整数最多也就是64位,对于这样的整数,计算两个数之间的模是很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过 64位的整数的模,用户也许不得不采用类似于多位数除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算 128位以上的素数的情况比比皆是,设计这样的程序迫切希望能够抛弃除法和取模。
Stein算法由J. Stein 1961年提出,这个方法也是计算两个数的最大公约数。和欧几里德算法算法不同的是,Stein算法只有整数的移位和加减法。
首先必须注意到以下结论:
(1)gcd(a,a) = a,也就是一个数和他自身的公约数是其自身
(2)gcd(ka,kb) = k gcd(a,b),也就是最大公约数运算和倍乘运算可以交换,特殊的,当k=2时,说明两个偶数的最大公约数必然能被2整除。
Stein算法描述如下:
(1) 如果A=0,B是最大公约数,算法结束
(2) 如果B=0,A是最大公约数,算法结束
(3) 设置A1 = A、B1=B和C1 = 1
(4) 如果An和Bn都是偶数,则An+1 =An /2,Bn+1=Bn /2,Cn+1 =Cn *2(注意,乘2只要把整数左移一位即可,除2只要把整数右移一位即可)
(5) 如果An是偶数,Bn不是偶数,则An+1 =An /2,Bn+1 =Bn ,Cn+1 =Cn (很显然啦,2不是奇数的约数)
(6) 如果Bn是偶数,An不是偶数,则Bn+1 =Bn /2,An+1 =An ,Cn+1 =Cn (很显然啦,2不是奇数的约数)
(7) 如果An和Bn都不是偶数,则An+1 =|An -Bn|,Bn+1 =min(An,Bn),Cn+1 =Cn
n++,转(4).
注:上述中n+1,n等都是下标。
程序描述如下:
(1)int gcd(inta,int b)
{
if (a == 0) return b;
if (b == 0) return a;
if (a % 2 == 0 && b% 2 == 0) return 2 * gcd(a/2,b/2);
else if (a % 2 == 0) returngcd(a/2,b);
else if (b % 2 == 0) returngcd(a,b/2);
else returngcd(abs(a-b),min(a,b));
}
(2)intgcd(int a,int b)
{
if(a == 0) return b;
if(b == 0) return a;
if(a % 2 == 0 && b % 2 == 0) return gcd(a/2,b/2) << 1;
elseif (a % 2 == 0) return gcd(a>>1,b);
elseif (b % 2 == 0) return gcd(a,b>>1);
elsereturn gcd(abs(a-b),min(a,b));
}