《CT原理与算法》庄天戈 -学习笔记 之 一

文章介绍了医学成像中的投影概念,详细阐述了CT数的定义及其在区分组织间微小密度差异中的作用。此外,讨论了图像质量评价参数,如归一化均方距离判据d、归一化平均绝对距离判据r和最坏情况距离判据e,用于评估重建图像的准确性。
摘要由CSDN通过智能技术生成

目录

第一章 绪论
第二章 从投影重建图像算法I :反投影重建算法(累加法)
第三章 从投影重建图像算法lI :滤波反投影重建算法
第四章 扇束投影重建
第五章 从投影重建图像算法Ⅲ:迭代重建算法



一、若干基本概念

1.投影

  投影是一种变换。它是将一个N维函数通过对该函数沿某一特定方向的积分而变换成一个(N-1) 维函数。例如,二维函数 f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2)沿 x 2 x_2 x2轴规定的方向积分得一维函数:
p x 2 ( x 1 ) = ∫ − ∞ ∞ f ( x 1 , x 2 ) d x 2 p_{x_2}\left(x_1\right)=\int_{-\infty}^{\infty} f\left(x_1, x_2\right) \mathrm{d} x_2 px2(x1)=f(x1,x2)dx2
  一般情况下,积分不一定沿该坐标系中变量所代表的方向进行,而是沿另一方向,它与坐标系某变措方向成一交角。(此时与投影轴和坐标轴间夹角θ有关)
在这里插入图片描述

2.CT数

  经CT 重建的图像应是衰减系数μ的分布。但人体内部大部分软组织的μ都与水的μ很接近。水的μ为 0.19   c m − 1 0.19 \mathrm{~cm}^{-1} 0.19 cm1,脂肪的 μ μ μ约为 0.18   c m − 1 0.18 \mathrm{~cm}^{-1} 0.18 cm1, 两者仅差 0.01   c m − 1 0.01 \mathrm{~cm}^{-1} 0.01 cm1,其差值约为水的 μ μ μ值的5% 。若直接以这些 μ μ μ值成像,则软组织间的差异很难用它们来明显区别。为了显署地反映组织间的差异,引入CT 数。它的定义为:
C T  数  = μ t − μ w μ w × 1000 \mathrm{CT} \text { 数 }=\frac{\mu_{\mathrm{t}}-\mu_{\mathrm{w}}}{\mu_{\mathrm{w}}} \times 1000 \text {} CT  =μwμtμw×1000

  式中 μ t μ_t μt μ w μ_w μw分别为组织及水的线性衰减系数。CT 数又称Hounsfield 数,简称H 。显然可见,水的 H 为零。H > 0 ,表示 μ t μ_t μt μ w μ_w μw;H < 0 表示 μ t μ_t μt < μ w μ_w μw。骨的 μ μ μ 约为 2 μ w μ_w μw, 故对骨有H= + 1000 。空气的 μ μ μ 近乎零,所以对空气有H = -1000 。不同组织的H如图1.12 所示。
在这里插入图片描述
一般CT 装置的密度分辨力为△H=5 ,即能鉴别相当于 5 1000 μ w \frac{5}{1000} μ_w 10005μw的密度差异。

3.图像质量评价参数

  图像重建算法的研究常常借助于模型作为原始图像。模型(phantom) 可以是由若干椭圆组成的、赋予一定密度值的图形如下图 ,也可用其他基本图形(如矩形)构成。对该原始图像进行’扫描’求出投影值,再根据这些投影,以待研究的算法进行重建,得到重建后的图像评价。重建后图像与原始图像差异的客观标准是采用下面的三个评价参数(或称判据)。
在这里插入图片描述
(1)归一化均方距离判据d:
d = [ ∑ u = 1 N ∑ v = 1 N ( t u , v − r u , v ) 2 ∑ u = 1 N ∑ v = 1 N ( t u , v − t ˉ ) 2 ] 1 2 d=\left[\frac{\sum_{u=1}^N \sum_{v=1}^N(t_{u, v}-r_{u, v})^2}{\sum_{u=1}^N \sum_{v=1}^N(t_{u, v}-\bar{t})^2}\right]^{\frac{1}{2}} d=[u=1Nv=1N(tu,vtˉ)2u=1Nv=1N(tu,vru,v)2]21
  式中, t u , v t_{u, v} tu,v, r u , v r_{u, v} ru,v分别表示洌试模型和重建后图像中第u行、v 列的像素密度。 t t t为测试模型密度的平均值;图像的像素为NxN 个,d值越大表示两者偏差越大。
(2)归一化平均绝对距离判判据r:
r = ∑ u = 1 N ∑ v = 1 N ∣ t u , v − r u , v ∣ ∑ u = 1 N ∑ v = 1 N ∣ t u , v ∣ r=\frac{\sum_{u=1}^N \sum_{v=1}^N\left|t_{u, v}-r_{u, v}\right|}{\sum_{u=1}^N \sum_{v=1}^N\left|t_{u, v}\right|} r=u=1Nv=1Ntu,vu=1Nv=1Ntu,vru,v
  r= 0,说明没有误差。r 增大,说明误差增大。
(3)最坏情况距离判据e:
c = max ⁡ 1 < i < 1 N / 2 ] 1 < j < [ N / 2 ] ∣ T i , i − R i , j ∣ \mathcal{c}=\max _{\substack{1<i<1 N / 2] \\ 1<j<[N / 2]}}\left|T_{i, i}-R_{i, j}\right| c=1<i<1N/2]1<j<[N/2]maxTi,iRi,j
  其中 [ N / 2 ] [N / 2] [N/2] 表示小于 N / 2 N / 2 N/2 的最大整数,
T i , j = 1 4 ( t 2 i , 2 j + t 2 i + 1 , 2 j + t 2 i , 2 j + 1 + t 2 i + 1 , 2 j + 1 ) ; R i , j = 1 4 ( r 2 i , 2 j + r 2 i + 1 , 2 j + r 2 i , 2 j + 1 + r 2 i + 1 , 2 j + 1 ) 。 \begin{aligned} & T_{i, j}=\frac{1}{4}\left(t_{2 i, 2 j}+t_{2 i+1,2 j}+t_{2 i, 2 j+1}+t_{2 i+1,2 j+1}\right) ; \\ & R_{i, j}=\frac{1}{4}\left(r_{2 i, 2 j}+r_{2 i+1,2 j}+r_{2 i, 2 j+1}+r_{2 i+1,2 j+1}\right) 。 \end{aligned} Ti,j=41(t2i,2j+t2i+1,2j+t2i,2j+1+t2i+1,2j+1);Ri,j=41(r2i,2j+r2i+1,2j+r2i,2j+1+r2i+1,2j+1)
  需要指出,上述三个参数对不同类型的图像误差,其敏感程度是不同的。表面看来,d和r两个参数意义相仿,且都有平均意义。仔细考察可知,d较敏感地反映某几点产生较大误差的情况,而r则较敏感地反映许多点均有一些小误差的情况。下面举一个简单例子加以说明。
  设有一九像素的原始图像,密度为(1,2,3,4,5,6,7,8,9) ,而重建后图像的密度为(6,2,3,4,5,6,7,8,5) ,即有2 个点分别具有密度误差5及4 ,其他各点没有误差。则可算得:
d 1 = 0.83 , r 1 = 0.2 。 d_1 = 0.83, r_1 =0.2 。 d1=0.83r1=0.2
  若设重建后图像的九个像素密度均有1.5 的误差,则有:
d 2 = 0.58 , r 2 = 0.23 。 d_2=0.58, r_2= 0.23 。 d2=0.58r20.23
可见 d 1 > d 2 d_1>d_2 d1>d2 r 1 < r 2 r_1<r_2 r1r2。即d 较敏感地反映少数点的大误差情况,而r 则较敏感地反映多数点的小误差情况。参数e 反映重建后图像与模型图像中最大的(四点)平均密度差。


总结

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值