目录
第一章 绪论
第二章 从投影重建图像算法I :反投影重建算法(累加法)
第三章 从投影重建图像算法lI :滤波反投影重建算法
第四章 扇束投影重建
第五章 从投影重建图像算法Ⅲ:迭代重建算法
一、若干基本概念
1.投影
投影是一种变换。它是将一个N维函数通过对该函数沿某一特定方向的积分而变换成一个(N-1) 维函数。例如,二维函数
f
(
x
1
,
x
2
)
f(x_1,x_2)
f(x1,x2)沿
x
2
x_2
x2轴规定的方向积分得一维函数:
p
x
2
(
x
1
)
=
∫
−
∞
∞
f
(
x
1
,
x
2
)
d
x
2
p_{x_2}\left(x_1\right)=\int_{-\infty}^{\infty} f\left(x_1, x_2\right) \mathrm{d} x_2
px2(x1)=∫−∞∞f(x1,x2)dx2
一般情况下,积分不一定沿该坐标系中变量所代表的方向进行,而是沿另一方向,它与坐标系某变措方向成一交角。(此时与投影轴和坐标轴间夹角θ有关)
2.CT数
经CT 重建的图像应是衰减系数μ的分布。但人体内部大部分软组织的μ都与水的μ很接近。水的μ为
0.19
c
m
−
1
0.19 \mathrm{~cm}^{-1}
0.19 cm−1,脂肪的
μ
μ
μ约为
0.18
c
m
−
1
0.18 \mathrm{~cm}^{-1}
0.18 cm−1, 两者仅差
0.01
c
m
−
1
0.01 \mathrm{~cm}^{-1}
0.01 cm−1,其差值约为水的
μ
μ
μ值的5% 。若直接以这些
μ
μ
μ值成像,则软组织间的差异很难用它们来明显区别。为了显署地反映组织间的差异,引入CT 数。它的定义为:
C
T
数
=
μ
t
−
μ
w
μ
w
×
1000
\mathrm{CT} \text { 数 }=\frac{\mu_{\mathrm{t}}-\mu_{\mathrm{w}}}{\mu_{\mathrm{w}}} \times 1000 \text {}
CT 数 =μwμt−μw×1000
式中
μ
t
μ_t
μt、
μ
w
μ_w
μw分别为组织及水的线性衰减系数。CT 数又称Hounsfield 数,简称H 。显然可见,水的 H 为零。H > 0 ,表示
μ
t
μ_t
μt >
μ
w
μ_w
μw;H < 0 表示
μ
t
μ_t
μt <
μ
w
μ_w
μw。骨的
μ
μ
μ 约为 2
μ
w
μ_w
μw, 故对骨有H= + 1000 。空气的
μ
μ
μ 近乎零,所以对空气有H = -1000 。不同组织的H如图1.12 所示。
一般CT 装置的密度分辨力为△H=5 ,即能鉴别相当于
5
1000
μ
w
\frac{5}{1000} μ_w
10005μw的密度差异。
3.图像质量评价参数
图像重建算法的研究常常借助于模型作为原始图像。模型(phantom) 可以是由若干椭圆组成的、赋予一定密度值的图形如下图 ,也可用其他基本图形(如矩形)构成。对该原始图像进行’扫描’求出投影值,再根据这些投影,以待研究的算法进行重建,得到重建后的图像评价。重建后图像与原始图像差异的客观标准是采用下面的三个评价参数(或称判据)。
(1)归一化均方距离判据d:
d
=
[
∑
u
=
1
N
∑
v
=
1
N
(
t
u
,
v
−
r
u
,
v
)
2
∑
u
=
1
N
∑
v
=
1
N
(
t
u
,
v
−
t
ˉ
)
2
]
1
2
d=\left[\frac{\sum_{u=1}^N \sum_{v=1}^N(t_{u, v}-r_{u, v})^2}{\sum_{u=1}^N \sum_{v=1}^N(t_{u, v}-\bar{t})^2}\right]^{\frac{1}{2}}
d=[∑u=1N∑v=1N(tu,v−tˉ)2∑u=1N∑v=1N(tu,v−ru,v)2]21
式中,
t
u
,
v
t_{u, v}
tu,v,
r
u
,
v
r_{u, v}
ru,v分别表示洌试模型和重建后图像中第u行、v 列的像素密度。
t
t
t为测试模型密度的平均值;图像的像素为NxN 个,d值越大表示两者偏差越大。
(2)归一化平均绝对距离判判据r:
r
=
∑
u
=
1
N
∑
v
=
1
N
∣
t
u
,
v
−
r
u
,
v
∣
∑
u
=
1
N
∑
v
=
1
N
∣
t
u
,
v
∣
r=\frac{\sum_{u=1}^N \sum_{v=1}^N\left|t_{u, v}-r_{u, v}\right|}{\sum_{u=1}^N \sum_{v=1}^N\left|t_{u, v}\right|}
r=∑u=1N∑v=1N∣tu,v∣∑u=1N∑v=1N∣tu,v−ru,v∣
r= 0,说明没有误差。r 增大,说明误差增大。
(3)最坏情况距离判据e:
c
=
max
1
<
i
<
1
N
/
2
]
1
<
j
<
[
N
/
2
]
∣
T
i
,
i
−
R
i
,
j
∣
\mathcal{c}=\max _{\substack{1<i<1 N / 2] \\ 1<j<[N / 2]}}\left|T_{i, i}-R_{i, j}\right|
c=1<i<1N/2]1<j<[N/2]max∣Ti,i−Ri,j∣
其中
[
N
/
2
]
[N / 2]
[N/2] 表示小于
N
/
2
N / 2
N/2 的最大整数,
T
i
,
j
=
1
4
(
t
2
i
,
2
j
+
t
2
i
+
1
,
2
j
+
t
2
i
,
2
j
+
1
+
t
2
i
+
1
,
2
j
+
1
)
;
R
i
,
j
=
1
4
(
r
2
i
,
2
j
+
r
2
i
+
1
,
2
j
+
r
2
i
,
2
j
+
1
+
r
2
i
+
1
,
2
j
+
1
)
。
\begin{aligned} & T_{i, j}=\frac{1}{4}\left(t_{2 i, 2 j}+t_{2 i+1,2 j}+t_{2 i, 2 j+1}+t_{2 i+1,2 j+1}\right) ; \\ & R_{i, j}=\frac{1}{4}\left(r_{2 i, 2 j}+r_{2 i+1,2 j}+r_{2 i, 2 j+1}+r_{2 i+1,2 j+1}\right) 。 \end{aligned}
Ti,j=41(t2i,2j+t2i+1,2j+t2i,2j+1+t2i+1,2j+1);Ri,j=41(r2i,2j+r2i+1,2j+r2i,2j+1+r2i+1,2j+1)。
需要指出,上述三个参数对不同类型的图像误差,其敏感程度是不同的。表面看来,d和r两个参数意义相仿,且都有平均意义。仔细考察可知,d较敏感地反映某几点产生较大误差的情况,而r则较敏感地反映许多点均有一些小误差的情况。下面举一个简单例子加以说明。
设有一九像素的原始图像,密度为(1,2,3,4,5,6,7,8,9) ,而重建后图像的密度为(6,2,3,4,5,6,7,8,5) ,即有2 个点分别具有密度误差5及4 ,其他各点没有误差。则可算得:
d
1
=
0.83
,
r
1
=
0.2
。
d_1 = 0.83, r_1 =0.2 。
d1=0.83,r1=0.2。
若设重建后图像的九个像素密度均有1.5 的误差,则有:
d
2
=
0.58
,
r
2
=
0.23
。
d_2=0.58, r_2= 0.23 。
d2=0.58,r2=0.23。
可见
d
1
>
d
2
d_1>d_2
d1>d2而
r
1
<
r
2
r_1<r_2
r1<r2。即d 较敏感地反映少数点的大误差情况,而r 则较敏感地反映多数点的小误差情况。参数e 反映重建后图像与模型图像中最大的(四点)平均密度差。