【理论与实例】L1正则化为什么可以使模型参数具有稀疏性?

L1正则化通过约束解空间、梯度下降过程及先验概率影响,促进模型参数稀疏性,提高泛化性能。在不同维度下,L1正则化的解空间形状使得参数更可能为0,相较于L2正则化更能实现特征选择。通过实例分析,调整L1正则化比例,可明显观察到参数稀疏性的变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

L1正则化为什么可以使模型参数具有稀疏性?

稀疏性就是很多参数为0的情况,对于维度很高的模型,稀疏性意味着抓住主要矛盾,可以提升模型的泛化性能。
L1正则化: W ∗ = a r g m i n ∑ j ( t ( X j ) − ∑ i w i h i ( X i ) ) 2 + λ ∑ i = 1 k ∣ w i ∣ W^*=argmin\sum_j(t(X_j)- \sum_iw_ih_i(X_i))^2+\lambda\sum_{i=1}^k|w_i| W=argminj(t(Xj)iwihi(Xi))

### L1正则化的概念作用 L1正则化是一种常用的正则化技术,在机器学习中被广泛应用于减少模型复杂度以及防止过拟合。其核心思想是在损失函数的基础上增加一个基于权重绝对值的惩罚项,从而促使部分权重变为零[^3]。通过这种方式,L1正则化能够有效地实现特征选择的功能。 具体来说,L1正则化的优化目标可以表示为如下形式: \[ \text{minimize } \text{MSE} + \lambda \sum_{j=1}^{p} |w_j| \] 其中,\( \text{MSE} \) 表示均方误差,\( w_j \) 是第 \( j \) 个特征对应的权重,\( p \) 是特征总数,\( \lambda \) 是正则化参数,用于平衡原始损失函数和正则化项之间的关系[^5]。 由于 L1 范数具有使某些权重精确等于零的能力,因此它能够在训练过程中自动筛选出最重要的特征,同时忽略那些无关紧要的特征。这种特性被称为 **稀疏性**,即最终得到的模型只保留少量的关键特征[^4]。 --- ### 实现方式 在实际应用中,可以通过多种编程框架来实现带有 L1 正则化的模型。以下是 Python 中使用 Scikit-Learn 库的一个简单例子,展示如何利用线性回归模型加入 L1 正则化(也称为 Lasso 回归): ```python from sklearn.linear_model import Lasso import numpy as np # 假设 X 是输入特征矩阵, y 是目标变量向量 X = np.array([[1, 2], [3, 4], [5, 6]]) y = np.array([7, 8, 9]) # 创建 Lasso 模型实例 (alpha 参数对应于 λ) lasso_model = Lasso(alpha=0.1) # 训练模型 lasso_model.fit(X, y) # 输出模型系数 print("Coefficients:", lasso_model.coef_) ``` 上述代码片段展示了如何定义并训练一个简单的 Lasso 回归模型。`alpha` 参数决定了正则化强度;较大的 `alpha` 值会更倾向于将更多的权重压缩至零[^1]。 --- ### 物理意义直观解释 从几何角度来看,L1 正则化的作用机制可以用约束区域的概念加以说明。当我们在高维空间中寻找最优解时,L1 正则化会在该空间施加一个多边形形状的边界条件。相比于圆形或椭圆状的 L2 边界,多边形更容易触及坐标轴上的顶点位置,这正是为什么许多权重会被强制设置为零的原因之一[^2]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值