【理论与实例】L1正则化为什么可以使模型参数具有稀疏性?

L1正则化为什么可以使模型参数具有稀疏性?

稀疏性就是很多参数为0的情况,对于维度很高的模型,稀疏性意味着抓住主要矛盾,可以提升模型的泛化性能。
L1正则化: W ∗ = a r g m i n ∑ j ( t ( X j ) − ∑ i w i h i ( X i ) ) 2 + λ ∑ i = 1 k ∣ w i ∣ W^*=argmin\sum_j(t(X_j)- \sum_iw_ih_i(X_i))^2+\lambda\sum_{i=1}^k|w_i| W=argminj(t(Xj)iwihi(Xi))2

  • 5
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
下面是一个使用PyTorch实现L1正则化的示例代码: ```python import torch import torch.nn as nn class L1Regularization(nn.Module): def __init__(self, penalty): super(L1Regularization, self).__init__() self.penalty = penalty def forward(self, model): l1_penalty = 0 for param in model.parameters(): l1_penalty += torch.norm(param, p=1) return self.penalty * l1_penalty ``` 在这个代码中,我们定义了一个L1Regularization类,它继承了nn.Module类。在构造函数中,我们传入一个penalty参数,该参数用于控制正则化的强度。在forward方法中,我们计算了模型中所有参数L1范数,并将其乘以penalty参数作为正则化损失返回。然后,我们可以在训练过程中将它添加到损失函数中,以实现L1正则化。例如: ```python model = MyModel() l1_reg = L1Regularization(penalty=0.001) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) for inputs, labels in dataloader: optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) + l1_reg(model) loss.backward() optimizer.step() ``` 在这个示例代码中,我们首先创建了一个MyModel类的实例。然后,我们创建了一个L1Regularization类的实例,并将penalty参数设置为0.001。接着,我们定义了一个交叉熵损失函数和一个随机梯度下降优器。在每次训练迭代中,我们首先将优器的梯度清零,然后计算模型的输出和损失。我们将正则化损失和交叉熵损失相加,并调用backward方法计算梯度。最后,我们使用优器更新模型参数

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值